
Limepay for SiteGenesis v22.2.1 Page 1 of 72

Integration Document

SiteGenesis

Version 22.2.1

Contents
1. Overview ... 4

2. Features .. 4

2.1. Payment Modes ... 5

2.1.1. Limepay One Time Payment ... 5

2.1.2. Limepay Pay Later Payment .. 5

2.1.3. Supported Payment Types .. 5

2.2. Limepay Payment Widget .. 6

2.3. Supported API .. 6

3. Limitations, Constraints .. 6

4. Privacy, Payment ... 7

4. Compatibility ... 8

5. Installation .. 8

5.1. Cartridges ... 8

5.2. Metadata .. 8

5.2.1. Services ... 8

5.2.2. Payment Processor ... 9

5.2.3. Payment Methods ... 9

5.2.4 Customer Groups ... 9

5.3. Google Phone Number Library – Node.js extension ... 10

6. Configurations ... 11

6.1. Configuring Site Preferences .. 11

6.2. Configuring Payment Methods .. 14

7. Storefront Code Changes .. 15

7.1. Controller Changes ... 15

7.2. Models Changes ... 21

7.3. Client Side JS Changes .. 23

7.4. Custom Files ... 32

7.5. ISML Changes ... 32

8. User Guide ... 41

8.1. Custom CSS .. 41

8.2. Limepay Widget ... 42

8.2.1. Toggle Widget ... 42

8.2.2. Textual Widget .. 44

8.2.3. Product Widget ... 44

8.2.4. Cart Widget ... 48

8.2.5. Checkout Content & Stages .. 52

8.2.6. Customer Applicable Checkout View .. 57

8.2.7. Payment Method Description ... 61

8.2.8. Changing Billing Email / Phone ... 62

8.2.9. Limepay Control Switch .. 62

9. Refunds & Backend Operations .. 63

9.1. Refunds .. 63

9.2. Payment Flow Processes .. 63

10. Testing ... 65

10.1. Checkout with One Time Payment .. 66

10.2. Checkout with Pay Later Payment ... 72

10.3. Test Cards ... 78

11. Operation, Maintenance ... 78

11.1. Availability .. 78

11.2. Failover / Recovery Process ... 78

11.3. Support ... 78

12. Appendix ... 78

12.1. System Extensions .. 78

12.1.1. Order ... 79

12.1.2. PaymentTransaction ... 79

12.1.3. Basket .. 79

12.1.4. Site Preference .. 79

12.1.5. Category .. 80

12.1.6. Product .. 80

12.2. Locating Code Changes .. 80

13. Known Issues ... 82

14. Release History .. 82

1. Overview

The Limepay payment cartridge enables commerce cloud to integrate with the Limepay payment

service. It offers only non hosted checkout service to storefront. The purpose of the document is to

guide through an easy installation of Limepay payment cartridge onto a commerce cloud store.

The integration is based on the SiteGenesis demo store, provided by SFCC.

The integration consists of an archive with contents as described in the below table.

Name Purpose

cartridges Contains Limepay integration cartridges

cartridges\int_limepay_sg This cartridge contains the SiteGenesis specific changes

required for Limepay integration

cartridges\ int_limepay This cartridge contains the API calls for Limepay

integration and common code

cartridges\limepay_sg_changes This cartridge references all the changes done to OOB

SiteGenesis files. Please do not include this in the cartridge

path and this is for reference purposes only

metadata Contains system object extensions and configurations

required for the integration

documentation Contains this document “Limepay SiteGenesis Integration

Document”

2. Features

The integration described in this document supports the following features:

o Limepay one time settlement and pay later instalment payment for checkout

o Pay later payment in 4 instalments over a frequency of 2 weeks each

o Adjustable initial amount and instalment due dates

o Limepay payment widgets on product and cart displays breakdown of prices for one time and pay

later options

o Service for transactions in AUD currency

o Ability to enable/disable one time payments for store encouraging only pay later payments

o Ability to adjust the threshold value for which pay later payments would be allowed for store

o Ability for customer to select Limepay payment mode for checkout from product / cart pages

through widget interaction

o Ability to disallow certain products or category from pay later payment

o Merchant refunds

o Ability to perform 3DS transactions.

2.1. Payment Modes

A store can be configured to allow any one of the following Limepay payment options for checkout :

 One time and pay later

 Pay later only

2.1.1. Limepay One Time Payment

Limepay one time settlement payment allows customer to pay the whole order total in one go entering

card details (Refer section 2.1.3 for supported cards) and successfully place the order. Payment

details are entered in a Limepay iFrame provided under the payment method section. Merchant can

customize the iFrame through cartridge supported file system. One time payments can be disabled

throughout for any store through configuration thereby allowing only pay later payment.

2.1.2. Limepay Pay Later Payment

Limepay pay later payment allows customer to pay the order amount in total of 4 instalments each

defaulting to a value of one fourth the order amount due over a period of 2 weeks. However, Limepay

provides the ability for the customer to change the first instalment amount up to a certain extent (as

per Limepay threshold rules) and have the subsequent instalments and their due dates adjusted.

Products and categories can be configured to be disabled for pay later payment at checkout. Merchant

also has the control over the order amount threshold allowing pay later payment. Following scenarios

disqualifies a customer from pay later payment mode at checkout :

 At least one pay later disabled product in cart

 Order total exceeds the pay later threshold range*

* Limepay configures the pay later threshold range for a merchant used for checkout. (Refer point 4 under section

8.2.4)

2.1.3. Supported Payment Types

Supported cards by Limepay:

 Visa

 Mastercard

 American Express

Limepay also provides support to 3DSecure cards

For any other supported cards please check with Limepay

2.2. Limepay Payment Widget

Payment widget for product and cart pages provides the customer a breakdown information of the

price between one time and pay later payment modes and thereby providing a means for the

customer to opt between the 2 modes for checkout. Customers get to know the instalments at

product total or cart total level. Widget gets a toggle state when both payment modes are

configured for the store as mentioned in the above section, allowing the customer to interact and

he/she can preselect a particular payment mode for checkout from product or cart pages. User

toggled state of the widget is remembered throughout the user session among product/cart widgets

and checkout pages. Widget gets a simple textual state and calls out the instalment breakdown

when one time is disabled and pay later is only configured for the store. However, cart and product

pages can be configured by merchant to independently display either of the textual or toggle widget

when payment mode selected for the site is one time and pay later. Whereas when payment mode

is configured for only pay later, textual widget takes precedence and toggle widget shall not be

seen anywhere across the storefront user flow.

2.3. Limepay 3DS

Limepay 3DS payments allow brands to perform 3DS transaction via Limepay payment methods.

When place order on review page, an API call made to Limepay for creating payment and SFCC

pass the 3DS true in API request and Limepay Payment API return a 403 response along a payment action

which requires to perform 3DS challenge by customer. In this case an Popup widget appears on front end

rendered by Limepay and customer have to go through all 3DS verification in Limepay 3DS Popup widget.

Limepay either return error or success after verifying the 3DS that leads to place the order in case of

success and show the error in case of any 3DS challenge failure.

2.4. Supported API

API Description Relative Endpoint

Create Order

Creates a new order at

Limepay system during

payment authorization

/orders

Pay Order

Pay for an order using

existing payment token

/orders/{limepay_order_id}/pay

Create Refund

Create a new refund for

Limepay transaction

/refunds

 Upsert

Customer

Create a new Limepay

customer

 /customers/plugin

 Signin Customer

Singn in Limepay Customer

With Customer ID and

generate customer token

/authn/tenants/accounts:signinCustomerWithCustomerId

Also refer section 5.2.1. for complete endpoint details

3. Limitations, Constraints

Limepay service supports only transactions in AUD currency. Any other site currency is not supported

and or need to be checked with Limepay service team.

4. Privacy, Payment

This integration requires access to the following customer data elements: Billing

Address, Shipping Address, Order Details and Customer Profile.

No credit card details are stored within SFCC using this integration.

4. Compatibility

Compatible with Commerce Cloud Platform Release 21.5, Site Genesis 105.1.1.

5. Installation

5.1. Cartridges

Upload the following cartridges to the code version in Business Manager

 int_limepay

 int_limepay_sg

Configure the cartridge path as shown below by adding to the beginning of the cartridge path

Site Cartridge Path int_limepay_sg:int_limepay

5.2. Metadata

All BM configurations related to the below components have been configured within metadata/site-

template folder

 System object extensions

 Services

 Payment Processors

 Payment Methods

 Customer Groups

Follow the below steps to import the BM configurations for the above-mentioned components

1. Locate the folder metadata in the installation package

2. Review the contents within site-template folder

3. Change the site ID under path site-template\sites to merchant site ID

4. Archive the folder to ‘site-template.zip’ and the Import the file via Site Import & Export

5.2.1. Services

New service ‘limepay.http.service’ has been added as part the integration

Service ID Service Profile Service Credential

limepay.http.service limepay.http.profile limepay.http.credentials

Map the URLs for the sandbox and production endpoints as follows

Environment URL

Non-production instances https://api.sandbox.limepay.com.au

Production instances

https:// api.limepay.com.au

Service credentials requires no user/password rather refers the public/secret key combinations

mapped to site preferences.

Note : Do not use hyphenated hostnames to access Open Commerce API (OCAPI) or Storefront while

setting up the URL for the calls made internally for OCAPI and Storefront. Instead of use vanity host

names such as brand.com , www.brand.com etc.

5.2.2. Payment Processor

New payment processor used by the cartridge

Payment Processor ID Purpose

LIMEPAY
Unified payment processor for processing

Limepay one time and pay later transactions

5.2.3. Payment Methods

Two new payment methods are used by the cartridge

Payment Method ID Purpose

Limepay
Main payment method used for Limepay one time

and pay later checkout

Limepay_instalment
Dummy payment method used for configuring pay

later threshold range. Not used for placing orders.

5.2.4 Customer Groups

New dynamic customer group ‘ExcludeLimepayPayLater’ is used by the cartridge based on user

storefront custom session attribute. When a customer adds at least one pay later disabled product to

cart he/she gets added to this customer group thereby being disqualified for pay later option at

checkout.

https://api.sandbox.limepay.com.au/
http://www.brand.com/

5.3. Google Phone Number Library – Node.js extension

Limepay checkout API accepts customer billing country and phone number as input for rendering the

checkout iFrame. A Node.js extension package ‘google-libphonenumber’ is used by the cartridge to

parse these two customer fields resulting in E164 formatted phone number as required by the API.

For this add the node package ‘google-libphonenumber’ to your project package.json dev

dependencies and build

For example, customer selects billing country as Australia and enters billing phone number as shown

in below image, the library then parses it to E164 format output as ‘+61883942707’ where ‘+61’ is

mapped from billing country and the remaining digits from the actual billing phone field. The

formatted number is then passed to Limepay checkout iFrame for rendering and proceeding with

checkout by customer. Note, One Time Password (OTP) SMS are generated by Limepay systems onto

this phone number while proceeding with pay later payment option and is required to be

authenticated by the storefront customer before successfully placing order

For more details on ‘google-libphonenumber’ library, see

https://www.npmjs.com/package/google-libphonenumber

6. Configurations

The below sections explain how to set up the Limepay integration related configurations within

Business Manager

6.1. Configuring Site Preferences

Refer to the following table for the different site preferences used by Limepay integration

Site Preference Value Description

Limepay Enabled Yes Centralized control to turn on/off Limepay

payments for the site

Limepay Client Public

Key

Merchant`s Limepay

public key

Key for rendering Limepay payment iFrame

at checkout page under payment method

section, used by Limepay checkout API. Also

utilized for acquiring payment tokens for

completing an order

Limepay Client Secret
Key

Merchant`s Limepay

secret key

Key for authenticating a merchant for

Limepay service by backend server. Place

order works with correct pair of merchant

specific public/secret keys.

Limepay Payment
Options

 Full Payment & Split

Payment (multiple)

 Split Payment Only

(splitOnly)

Allowed Limepay payment options for site.

Full Payment & Split Payment provide the

customer with the choice to opt between the

2 for checkout. Whereas Split Payment Only

allows pay later as a payment and no one

time settlements allowed.

Limepay Multi Option
Default

 Full Payment (full)

 Split Payment (split)

This preference is used only when ‘multiple’
is selected for the above preference

‘Limepay Payment Options’. Lets merchants

decide which among the 2 modes would be

defaulted as payment option for a site.

Limepay PDP Widget
Mode

 Textual Message

(textual)

 Toggle Button

(toggle)

Decides product page / quick view Limepay

widget behavior. Toggle button displays

breakdown of one time and pay later options

and allows customer to choose between 2

for checkout. Toggle default state matches to

above preference ‘Limepay Multi Option

Default’. Toggle widget is applicable for a site

when both payments are allowed as per

preference ‘Limepay Payment Options’.
However, a merchant may also configure to
display textual widget despite both payments
are allowed. The textual widget shows a

 breakdown of pay later payment. When
‘splitOnly’ is configured for ‘Limepay Payment
Options’ irrespective of this preference widget
behavior shall always fall back to textual
mode as customer has no options to choose
between.

Limepay Cart Widget
Mode

 Textual Message

(textual)

 Toggle Button

(toggle)

Decides cart page Limepay widget behavior.

Toggle button displays breakdown of one

time and pay later options and allows

customer to choose between 2 for checkout.

Toggle default state matches to above

preference ‘Limepay Multi Option Default’.
Toggle widget is applicable for a site when

both payments are allowed as per

preference ‘Limepay Payment Options’.
However, a merchant may also configure to
display textual widget despite both payments
are allowed. The textual widget shows a
breakdown of pay later payment. When
‘splitOnly’ is configured for ‘Limepay Payment
Options’ irrespective of this preference widget
behavior shall always fall back to textual
mode as customer has no options to choose
between.

Lime Pay Script API
URL

(See below) Limepay API url for rendering iFrame

payment section at checkout and acquiring

payment token for processing order based

on storefront basket details. This URL works

with merchant`s public key preference

mentioned above

Limepay Customer
Service Email

(Marchant email id`s) Comma or semi colon separated email id`s to

which Limepay refund failure notification

would be sent

3DS Enabled Yes/No depending on

enable/disable 3DS Flow

Control to turn off/on the Limepay 3DS

functionality.

Limepay 3DS
Minimum Amount

Any value in number. Minimum Total Amount added to enable the

Limepay 3DS Verification.

Only check if 3DS is enable and see if order

total is greater or equal to this amount then

3DS verification is allowed.

Primary Color Any Hex Color Code. Color that loads on Limepay render widget

Apple Pay Domain
Association

Domain Association Code Used to Limepay Integration with Apple Pay

Environment Limepay Script API URL

Non-production instances

https://checkout.limepay.com.au/v2/checkout-
v2.1.0.min.js

Production instances

https://checkout.limepay.com.au/v2/checkout-
v2.1.0.min.js

https://checkout.limepay.com.au/v2/checkout-v2.1.0.min.js
https://checkout.limepay.com.au/v2/checkout-v2.1.0.min.js
https://checkout.limepay.com.au/v2/checkout-v2.1.0.min.js
https://checkout.limepay.com.au/v2/checkout-v2.1.0.min.js

6.2. Configuring Payment Methods

Refer below table for configuring Limepay payment methods

Payment

Method Setting

Payment Method :

Limepay

Payment Method :

Limepay_instalment

Description

Enabled Yes Yes Though Limepay_instalment

is a dummy payment method

it requires to be enabled to

allow threshold price range

validation by storefront.

However the same payment

method has been skipped

from rendering as a payment

method at checkout.

Payment

Processor

LIMEPAY Do not configure Only payment method used

for checkout is ‘Limepay’ and

is mapped to a valid

processor.

‘Limepay_instalment’ is only

for configurations

Min/Max

Payment Ranges

Do not configure Min/Max payment

ranges allowed for pay

later payment (Use the

min/max range

provided by Limepay)

Do not configure the min/max

payment ranges for ‘Limepay’
as it is the main payment

method used to place orders.

Set it for supported AUD

currency against

‘Limepay_instalment’ to limit

payment range allowed for

pay later.

Currencies AUD AUD Please configure the

applicable currencies based

on your requirements.

Countries Based on

requirements

Based on requirements Please configure the

applicable countries based on

your requirements.

7. Storefront Code Changes

Make the following code changes on your SiteGenesis cartridge to integrate with Limepay

7.1. Controller Changes

COPlaceIOrder.js

File : (merchant_controllers)\cartridge\controllers\COPlaceOrder.js

1. Add the below code changes to the function, handlePayments(order)

// Limepay, return response error to checkout page - START if (authorizationResult.error &&
authorizationResult.PlaceOrderError) { return {

error: true,
PlaceOrderError: authorizationResult.PlaceOrderError

};
}

// Limepay, return response error to checkout page - EN

Below the following lines

Transaction.wrap(handlePaymentTransaction);

} else {

var authorizationResult = PaymentProcessor.authorize(order,
paymentInstrument);

// Limepay, return response error to checkout page - START

if(handlePaymentsResult.error &&

handlePaymentsResult.PlaceOrderError) { return Transaction.wrap(function () {

OrderMgr.failOrder(order); return {

error: true,

PlaceOrderError: handlePaymentsResult.PlaceOrderError

};

});

}

// Limepay, return response error to checkout page - END

Changes to reflect as shown below

2. Add the below code changes to the function, start()

if (!order) {

app.getController('Cart').Show();

return {};

}

var handlePaymentsResult = handlePayments(order);

Below the following lines

Changes to reflect as shown below

3. Add 3DS payment condition to send payment action result on front end.

4. Add 3DS Response from payment handler method

COSummary.js

File : (merchant_controllers)\cartridge\controllers\COSummary.js

COBilling.js

File : (merchant_controllers)\cartridge\controllers\COBilling.js

Add below code in function returnToForm

Account.js

File : (merchant_controllers)\cartridge\controllers\Account.js

Add below code in function registrationForm() after

profileValidation = Customer.createAccount(email, password, app.getForm('profile'));

Login.js

File : (merchant_controllers)\cartridge\controllers\Login.js

Add Below code in function handleLoginForm () before

loginForm.clear();

7.2.
Models Changes

CartModel.js

File : (merchant_controllers)\cartridge\scripts\models

1. Add the below code changes to the function, calculate()

// Limepay changes - START updatePayLaterElligibility(this.object);
// Limepay changes - END

Below the following lines

calculate: function () { dw.system.HookMgr.callHook('dw.ocapi.shop.basket.calculate',
'calculate', this.object);

Changes to reflect as shown below

2. Add the following NEW Function definition towards the end of file before line

module.exports = CartModel;

// Limepay changes - START

/**

* Iterate bastket to find any diqualifying item Limepay pay later option

* and update customer session

* @param {object} basket The basket containing the elements which are

looped to find elligibility

*/

function updatePayLaterElligibility (basket) {

var limepayUtilsHelpers = require('*/cartridge/scripts/helpers/

limepayUtilsHelpers');

var disableLimepayPayLater = false;

if (!basket.getGiftCertificateLineItems().isEmpty()) {

// Gift certificates always disqualifies pay later option

disableLimepayPayLater = true;

}

var productLineItems = basket.getAllProductLineItems();

if (!disableLimepayPayLater && !empty(productLineItems)) {

// If no gift certificates, iterate product line items

for (var i = 0; i < productLineItems.length; i++) {

var product = productLineItems[i].product;

if (limepayUtilsHelpers.excludeProductPayLater(product)) {

disableLimepayPayLater = true;

break;

}

}

}

if (disableLimepayPayLater &&

!session.custom.disableLimepayPayLater) {

// Set session attribute value

session.custom.disableLimepayPayLater = true;

} else if (!disableLimepayPayLater &&

'disableLimepayPayLater' in session.custom) {

// Clear session attribute value

delete session.custom.disableLimepayPayLater;

}

}

// Limepay changes - END

7.3. Client Side JS Changes

billing.js

File : (merchant_core)\cartridge\js\pages\checkout\billing.js

1. Add the below code changes to the global variable set at the top of the file

limepay = require('../../limepay');

Below the following lines

'use strict';

/* eslint-disable */

var ajax = require('../../ajax'), formPrepare = require('./formPrepare'), giftcard = require('../../giftc

Code changes to reflect as shown below

2. Add the below code changes to the function, updatePaymentMethod(paymentMethodID)

// Limepay changes - START
var $submitBillingFormButton = $('button[name=dwfrm_billing_save]');

$submitBillingFormButton.removeClass('hide');
if (paymentMethodID && 'Limepay' === paymentMethodID) {

$submitBillingFormButton.addClass('hide');
$('body').trigger('limePayment:handlePaymentTabEvents');

} else {
$('.limepay-submit-payment').remove();

}
// Limepay changes - END

Below the following lines

if ($selectedPaymentMethod.length === 0) {

$selectedPaymentMethod = $('[data-method="Custom"]');

}
$selectedPaymentMethod.addClass('payment-method-expanded');

// ensure checkbox of payment method is checked
$('input[name$="_selectedPaymentMethodID"]').removeAttr('checked');
$('input[value=' + paymentMethodID + ']').prop('checked', 'checked');

Code changes to reflect as shown below

3. Add the below code changes to init() function

// Limepay changes - START limepay.init();
// Limepay changes – END

Below the following lines

var $selectPaymentMethod = $('.payment-method-options');

var selectedPaymentMethod = $selectPaymentMethod.find(':checked')

.val();
formPrepare.init({

formSelector: 'form[id$="billing"]', continueSelector: '[name$="billing_save"]'
});

Changes to reflect as shown below

4. Add the below code changes to the end of event listener

$addGiftCert.on('click', function (e) {

// Limepay changes - START
// On gift certificate redemption, update Limepay form

$('body').trigger('limePayment:updateLimePayOrderAmount');
// Limepay changes – END

Below the following lines

if (fail) {
$error.html(msg); return;

} else {
window.location.assign(Urls.billing);

}

Code changes to reflect as shown below

// Limepay changes - START

// On successful coupon addition, update Limepay form

$('body').trigger('limePayment:updateLimePayOrderAmount');

// Limepay changes – END

if (data.success && data.baskettotal === 0) {

window.location.assign(Urls.billing);

}

5. Add the below code changes to the end of event listener

$addCoupon.on('click', function (e) {

Below the following lines

Code changes to reflect as shown below

6. Add below changes for 3DS initialization

productSet.js

File : (merchant_core) \cartridge\js\pages\product\productSet.js

1. Add the below code changes to the end of event listener

$productSetList.on('click', '.product-set-item .swatchanchor',

function (e) {

// Limepay changes - START

// Sync Limepay toggle widget state for remaining product set items

if ($container.find('.limepay-option').length > 0) {

var $currentToggle = $container.find('.limepay-

switch input[name=limepay-selection]');

var currentToggleSelection = $currentToggle.prop('checked') ? 'split

' : 'full';

$('.limepay-switch input[name=limepay-

selection]').not($currentToggle).prop('checked',

currentToggleSelection == 'split' ? true : false);

if (currentToggleSelection == 'full') {

$('.limepay-pay-onetime').not($container.find('.limepay-pay-

onetime')).addClass('active');

$('.limepay-payin-four').not($container.find('.limepay-payin-

four')).removeClass('active');

} else {

$('.limepay-pay-onetime').not($container.find('.limepay-pay-

onetime')).removeClass('active');

$('.limepay-payin-four').not($container.find('.limepay-payin-

four')).addClass('active');

}

}

// Limepay changes - END

Below the following lines

callback: function () {

updateAddToCartButtons(); tooltip.init();

Code changes to reflect as shown below

app.js

File : (merchant_core) \ cartridge\js\app.js

1. Add the new event listener code changes to the end of function, initializeEvents()

// Limepay changes - START
// Limepay toggle widget event

$('body').on('change', '.limepay-widget input#limepay- selection', function () {
var selectedToggle = $(this);

$('.limepay-pay-onetime').toggleClass('active');
$('.limepay-payin-four').toggleClass('active');

// Synchronize remaining page limepay toggles, based on current one
// For product sets

$('.limepay-widget input#limepay-selection').not(selectedToggle)
.prop("checked", selectedToggle.prop("checked")); var userToggleSelection = $('input[name=limepay-

selection]').is(':checked') ? 'split' : 'full';

var saveSelectionURL = $('input[name=limepay- selection]').data('selectionurl');
saveSelectionURL = saveSelectionURL + '?limepayToggle=' + userToggleSelection;

$('.user-account').on('click', function (e) { e.preventDefault();

$(this).parent('.user-info').toggleClass('active');
});

Below the following lines

Code changes to reflect as shown below

$.ajax({

url: saveSelectionURL, success: function(data) {
}
});

});
// Limepay changes - END

7.4. Custom Files

Limepay.js

int_limepay_sg\cartridge\controllers\Limepay.js

limepay.js

This new file has to be added to the merchants core cartridge

Copy the file from

limepay_sg_changes\cartridge\js\limepay.js

and place it under

(merchant_core)\cartridge\js\

7.5. ISML Changes

billing.isml

File : (merchant_core)\cartridge\templates\default\checkout\billing\billing.isml

<iscomment>Limepay changes - START</iscomment>
<isinclude template="limepay/limepaycheckoutinclude" />

<iscomment>Limepay changes - END</iscomment>

1. Add the below code changes towards the end of file

Code changes to reflect as shown below

paymentmethods.isml

File : (merchant_core)\cartridge\templates\default\checkout\billing\paymentmethods.isml

1. Add the below code changes inside the first <isif condition

<iscomment>Limepay changes - START</iscomment>
<isscript>

var limepayUtilsHelpers = require('*/cartridge/scripts
/helpers/limepayUtilsHelpers');

var isLimepayCheckoutAllowed = limepayUtilsHelpers
.limepayCheckoutAllowed();

</isscript>
<iscomment>Limepay changes - END</iscomment>

Below the following lines

<iscontent type="text/html" charset="UTF-8" compact="true"/>
<iscomment> TEMPLATENAME: paymentmethods.isml </iscomment>

<isinclude template="util/modules"/>
<isif condition="${pdict.OrderTotal > 0}">

Code changes to reflect as shown below

2. Add and update the existing code inside the div container as shown below

<div class="payment-method-options form-indent">

<iscomment>Limepay changes - START</iscomment>

<isif condition="${paymentMethodType.value.

equals('Limepay_instalment')}"><iscontinue/></isif>

<isif condition="${paymentMethodType.value.equals('Limepay') &&

!isLimepayCheckoutAllowed}">

<iscontinue/>

<iselseif condition="${paymentMethodType.value.equals('Limepay')

&& isLimepayCheckoutAllowed}">

<isinclude template="limepay/paymentmethodinput" />

<iselse/>

<div class="form-row label-inline">

<isset name="radioID" value="${paymentMethodType.value}"

scope="page"/>

<div class="field-wrapper">

<input id="is-${radioID}" type="radio" class="input-

radio" name="${pdict.CurrentForms.billing.paymentMethods.selectedPaymentMethod

ID.htmlName}" value="${paymentMethodType.htmlValue}" <isif condition="${paymen

tMethodType.value == pdict.CurrentForms.billing.paymentMethods.selectedPayment

MethodID.htmlValue}">checked="checked"</isif> />

</div>

<label for="is-${radioID}"><isprint value="${Resource.

msg(paymentMethodType.label,'forms',null)}"/></label>

</div>

</isif>

<iscomment>Limepay changes - END</iscomment>

<div class="payment-method-options form-indent">
<isloop items="${pdict.CurrentForms.billing.paymentMethods.selected PaymentMethodID.options}" var="paymen
<iscomment>Ignore GIFT_CERTIFICATE method, GCs are handled separately before other payment methods.</iscom
<isif condition="${paymentMethodType.value.equals(dw.order. PaymentInstrument.METHOD_GIFT_CERTIFICATE)}">
</isif>

Below the following lines

Code changes to reflect as shown below

3. Add the below code changes to the custom processor section

<iscomment>Limepay changes - START</iscomment>
<isif condition="${isLimepayCheckoutAllowed}">

<isinclude template="limepay/paymentmethod" sf-toolkit="on" />
</isif>

<iscomment>Limepay changes - END</iscomment>

Below the following lines

<div class="bml-terms-and-conditions form-caption">

<iscontentasset aid="bml-tc"/>

</div>
<div class="form-row form-caption">

<isinputfield formfield="${pdict.CurrentForms.billing. paymentMethods.bml.termsandconditions}" type="chec
</div>
</div>

Code changes to reflect as shown below

cart.isml

File : (merchant_core)\cartridge\templates\default\checkout\cart\cart.isml

1. Add the below code changes to the top include section

<iscomment>Limepay modules</iscomment>
<isinclude template="limepay/util/modules" />

Below the following lines

<iscontent type="text/html" charset="UTF-8" compact="true"/>

<isdecorate template="checkout/cart/pt_cart">

<isinclude template="util/modules" />
<isinclude template="util/reporting/ReportBasket.isml" />

Code changes to reflect as shown below

2. Add the below code changes above the last ‘cart-actions’ div container

<div class="cart-actions">

<iscomment>Limepay payment options widget - START</iscomment>

<isscript>

var limepayUtilsHelpers = require('*/cartridge/scripts/helpers/lim

epayUtilsHelpers');

// Preferred cart widget display mode

var cartWidgetDisplayMode = limepayUtilsHelpers.getLimepayWidgetDi

splayMode('cart');

var excludePayLaterForCustomer = limepayUtilsHelpers.isPayLaterExc

ludedForCustomer();

var bnpCartThresholdExceeds = limepayUtilsHelpers.bnplContextThres

holdExceeds('cart');

// Rendering widget display mode based on current basket products

& threshold

var userWidgetDisplayMode = excludePayLaterForCustomer || bnpCartT

hresholdExceeds ? 'hidden' : cartWidgetDisplayMode;

</isscript>

<islimepaypaymentwidget context="${'cart'}" amount="${orderTotalValue.

decimalValue}" currency="${session.currency.currencyCode}" widgetmode="${userW

idgetDisplayMode}" />

<iscomment>Limepay payment options widget - END</iscomment>

Below the following lines

<iselseif condition="${pdict.CouponStatus != null && pdict.CouponStatus.error}">
<div class="error">

${Resource.msgf('cart.' + pdict.CouponStatus.code, 'checkout', null, pdict.CurrentForms.cart.couponCode.h
</div>

</isif>
</div>

</div>
<input type="hidden" name="${dw.web.CSRFProtection. getTokenName()}" value="${dw.web.CSRFProtection.gener

</fieldset>
</form>

Code changes to reflect as shown below

htmlhead.isml

File : (merchant_core) \cartridge\templates\default\components\header\htmlhead.isml

1. Add the below code changes to the end of file

<!-- Limepay UI -->
<link rel="stylesheet" href="${URLUtils.staticURL ('/css/limepay.css')}" />

Code changes to reflect as shown beloiw

productsetproduct.isml

File : (merchant_core)\cartridge\templates\default\product\components\productsetproduct.isml

1. Add the below code changes beneath the following line

<isinclude template="product/components/pricing"/>

<iscomment> Limepay Product Widget - START </iscomment>
<isif condition="${pdict.isSet}">

<isset name="limepayPartOfProductSet" value="${true}" scope="pdict" />
<isinclude template="limepay/limepayproductwidget" />

</isif>
<iscomment> Limepay Product Widget - END </iscomment>

Code changes to reflect as shown below

productcontent.isml

File : (merchant_core) \cartridge\templates\default\product\productcontent.isml

1. Add the below code changes beneath the following line

<isinclude template="product/components/pricing"/>

<iscomment> Limepay Product Widget - START </iscomment>

<isinclude template="limepay/limepayproductwidget" />

<iscomment> Limepay Product Widget - END </iscomment>

Code changes to reflect as shown below

producttopcontentPS.isml

File : (merchant_core)\cartridge\templates\default\product\producttopcontentPS.isml

1. Add the below code changes beneath the following line

<isinclude template="product/components/pricing"/>

<iscomment> Limepay Product Widget - START </iscomment>
<isinclude template="limepay/limepayproductwidget" />

<iscomment> Limepay Product Widget - END </iscomment>

Code changes to reflect as shown below

8. User Guide

8.1. Custom CSS

Limepay allows merchant to redesign the checkout iFrame content through custom css file hosted by

cartridge and rendered by the Limepay checkout API

File Location : int_limepay_sg\cartridge\static\default\css\limepay.css

CSS added to the custom file will override the Limepay default CSS.

File : (merchant_core)\cartridge\js\limepay.js

For more detail see

https://docs.limepay.com.au/developer-portal/checkout/custom-integration-v2/#styling-the-checkout

8.2. Limepay Widget

Limepay provides widgets on product pages / quick views and cart page allowing the customer to

know a breakdown of price for each payment modes i.e, one time and pay later. There are 2 types of

widget the first being a toggle widget allowing customer interaction whereas the second a plain textual

one and requires no customer interaction. Widget enhances customer experience on the store letting

him/her know what mode of payment will be allowed for checkout. The toggle widget is identical to

the toggle button observed within the checkout iFrame as shown below, with the widget and checkout

toggle states being synced throughout the site on customer choice basis

NB: Widgets are visible on product/cart pages only when the followings conditions are satisfied

 ‘Limepay Enabled’ preference is set as true

 Payment method ‘Limepay’ is active for site

 User session currency matches the configured currency here AUD for the ‘Limepay’ payment

method

8.2.1. Toggle Widget

Limepay` s toggle widget has two states, with one time payment on the left and pay later payment on

the right. Each side also shows the price breakdown when used for checkout by the customer. One

time price split up on the left matches with the full price as seen on product or cart level. Whereas

pay later price split up on the right matches to an instalment amount of one fourth the full product or

cart total that the customer would pay equally in 4 different slots over a duration of 2 weeks each.

Toggle widgets are allowed for a site only when the preference ‘Limepay Payment Options’ is mapped

to ‘multiple’. Followingly a merchant can configure to have the toggle button be preselected for all

customers on a particular side through preference ‘Limepay Multi Option Default’. The customer can

change the state by clicking on widget and have a particular mode of payment preselected for his/her

checkout. Once a customer views the toggle widget, and changes the state either from product, cart

or checkout pages it is then recorded against user session and the same state would be retained

throughout the storefront session for product/cart/checkout pages.

A. Toggle widget selected for one time payment

B. Toggle widget selected for pay later payment

8.2.2. Textual Widget

Limepay’ s textual widget calls out only the pay later price breakdown with a plain text message. This

widget requires no customer interaction.

8.2.3. Product Widget

Limepay toggle and textual widgets are supported in product pages and quick views for all type of

products, and positioned beneath the product price section. Merchant can configure to show either

toggle or textual widget through preference ‘Limepay PDP Widget Mode’. However for preference

‘Limepay Payment Options’ selected as ‘splitOnly’ product widget would always fallback to textual mode

irrespective of the selected preference value for ‘Limepay PDP Widget Mode’. Certain products and or

categories can be configured to disallow pay later option through custom attributes

‘disableLimepayPayLater’. Products viewed would not show any form of the widget if the above

attribute is set as ‘true’. The attribute look up for product viewed follows the hierarchy as product >

product`s primary category. No other factors have control over the display of product widgets unlike

in the cart page related to customer scenarios like basket including pay later disabled products and or

total exceeding pay later threshold range. This will be discussed below in the cart widget section.

Let us see how product widgets are shown for different scenarios as follows

1. ‘Limepay Payment Options’ set as ‘multiple’ and ‘Limepay PDP Widget Mode’ set as

‘toggle’, product attribute ‘disableLimepayPayLater’ is set as ‘no’. Product widget would

be as shown below

2. ‘Limepay Payment Options’ set as ‘multiple’ and ‘Limepay PDP Widget Mode’ set as

‘textual’, poduct attribute ‘disableLimepayPayLater’ is set as ‘no’. Product widget would

be as shown below

3. ‘Limepay Payment Options’ set as ‘splitOnly and ‘Limepay PDP Widget Mode’ set as

‘toggle’ or ‘textual’, product attribute ‘disableLimepayPayLater’ is set as ‘no’. Product

widget would be as shown below

4. When product attribute ‘disableLimepayPayLater’ is set as ‘yes’, Limepay preferences

matches either of the above configurations 1,2 or 3 OR when ‘Limepay Enabled’ is set as

‘no’, product widget would not be shown

NB : Merchant can set the ‘disableLimepayPayLater’ at category level also, products

viewed whose primary category attribute have ‘disableLimepayPayLater’ value as checked

(true) do hide the product widget. Product`s ‘disableLimepayPayLater’ attribute is looked

upon for a true/checked value in the following order

1. Product

2. Product`s primary category

Product level disable pay later attribute :

Category Level disable pay later attribute :

NB: Product page widgets are placed within the cached product container, while the textual widgets

are cached toggle widgets are not, in order to render customer dynamic toggle state. So changing the

widget behavior through preference ‘Limepay PDP Widget Mode’ requires cache clear for effective

display of widget behaviour

When widget is configured for Toggle mode, they are rendered through remote include. This is to

synchronize the toggle widget with the customer dynamic selection throughout the storefront

session. While textual widget are always cached requires no dynamic content other than product

price.

8.2.4. Cart Widget

Limepay cart widgets supports toggle and textual modes and is positioned below cart total in summary

section. Merchant can configure to show either toggle or textual widget through preference ‘Limepay

Cart Widget Mode’. However, for preference ‘Limepay Payment Options’ selected as ‘splitOnly’ cart

widget mode would always fallback to textual mode irrespective of the selected preference value for

‘Limepay Cart Widget Mode’ This is same as the product widget behavior. Configured mode of cart

widget would not be visible if basket contains at least one pay later disabled product described in

above section AND/OR cart total exceeds the pay later threshold range configured for the dummy

payment method ‘Limepay_instalment’.

1. ‘Limepay Payment Options’ set as ‘multiple’ and ‘Limepay Cart Widget Mode’ set as ‘toggle’.

Basket do not contain pay later disabled product. Cart widget would be as shown below

2. ‘Limepay Payment Options’ set as ‘multiple’ and ‘Limepay Cart Widget Mode’ set as ‘textual.

Basket do not contain pay later disabled product. Cart widget would be as shown below

3. ‘Limepay Payment Options’ set as ‘splitOnly’ and ‘Limepay Cart Widget Mode’ set as ‘toggle’
or ‘textual. Basket do not contain pay later disabled product. Cart widget would be as shown

below

4. When basket contains at least one pay later disabled product AND/OR Limepay pay later

threshold exceeded for cart total, Limepay preferences matches either of the above

configurations 1,2 or 3 OR when ‘Limepay Enabled’ is set as ‘no’, cart widget would not be

shown

NB: Threshold range configured for pay later payment ‘Limepay_instalment’ has to be in sync with

range provided by Limepay for the merchant to have unified checkout payment and widget experience

among product, cart and checkout pages.

Synchronising the range between systems is to keep the behaviour of the widget and checkout iFrame

identical (product pages / quick views widget don’t rely on threshold check). For example when both

payment modes are configured for site, and cart widget is set for toggle, if cart total exceeds pay later

threshold no widget will be shown. Likewise iFrame at checkout won’t allow pay later payment. If cart

widget is set for textual widget and cart total exceeds pay later threshold no widget will be shown and

checkout iFrame will be rendered with a message signalling pay later threshold breach.

Pay later threshold range configuration

Configure range provided by Limepay for merchant under payment method

Since ‘Limepay’ is the main payment method is used for checkout no range shall be set here

8.2.5. Checkout Content & Stages

Limepay payment section for checkout is rendered within an iFrame appearing when the customer

selects Limepay payment method for billing. The customer must enter the card details in the iFrame

and then proceeds. Upon progressing the customer might encounter subsequent stages if applicable

within the same iFrame, that has to be filled in before completing the order. The subsequent stages

for one time / pay later checkout could be as follows :

One time settlement stages

 3D Secure page for 3DS supported cards

Pay later payment stages

 email/phione OTP verification

 Identity Details – Name/address/DOB details for KYC (for new customer who have not KYCed

before)

 Identity Details – Passport/DL details for KYC (for new customer who have not KYCed before)

 Review payment plan, accepting terms and conditions

 3D Secure page for 3DS supported cards

As the customer advances with each stage within the iFrame and click on the place order button,

a payment token is generated by the Limepay API and saved against the order to be used for the

create order service. Customer then lands on order summary page, and upon clicking the place

order button a service call is triggered to Limepay to complete the order. On successful service

response customer gets the order placed and lands on the order confirmation page.

Limepay payment iFrame in checkout billing :

iFrame content when toggle switched to pay later option

3D Secure page (test page for sandboxes)

NB: 3DS page is shown within the iFrame in subsequent stages of customer billing form

Pay later email & phone OTP verification

Identity Details

Pay later review payment plan stage

Pay later change today`s payment

Pay later change payment dates (+/- 2days from the proposed dates)

Once customer has successfully advanced through all stages applicable for one time or pay later

payments, customer can finally proceed for order completion.

8.2.6. Customer Applicable Checkout View

The iFrame rendered for Limepay payment section differs based on configuration and customer basket

state. Let us see different possible payment iFrame checkout options offered to customer based on

following rules :

A. Limepay one time and pay later allowed

When both mode of payments are configured for the site (preference ‘Limepay Payment Options’
set as ‘multiple’)

1. And storefront customer has no pay later disabled product in cart nor pay later threshold

exceeded for cart total, iFrame renders as shown below. Customer can choose between

the 2 modes for payment for checkout by toggling to the desired state

2. Pay later disabled product added to cart by customer, iFrame renders as shown below.

Limepay payment falls back to only allowing one time settlement for placing order and

customer cannot toggle nor check out with pay later option

3. Pay later threshold exceed for cart total (no pay later disabled product in cart), iFrame

renders as shown below. Limepay payment falls back to only allowing one time settlement

for placing order and customer cannot toggle nor check out with pay later option

4. Basket contains pay later disqualifying products (rule A2 above) and basket total also

exceeds pay later threshold (rule A3 above), rule A2 takes precedence over A3. Here

Limepay payment falls back to only allowing one time settlement for placing order

B. Limepay pay later only allowed

When only pay later payment is configured for the site (preference ‘Limepay Payment Options’ set as

‘splitOnly’)

1. And storefront customer has no pay later disabled product in cart nor pay later threshold

exceeds, iFrame renders as shown below. Customer can only checkout with pay later

advancing through different stages, one time settlements not allowed for site

2. Pay later disqualifying product added to cart, no Limepay payment method option is shown

for checkout rather only shows other applicable payment methods. Limepay payment stays

disabled entirely for customer until basket is cleared form pay later disabled products.

3. Pay later threshold exceed for cart total and no pay later disabled product in cart, iFrame

renders as shown below. A message is displayed to customer within iFrame signalling breach

of pay later threshold. Customer cannot checkout using Limepay in this scenario unless cart

total is adjusted within the stipulated range

4. Basket contains pay later disabled product (rule B2 above) and basket total exceeds pay later

threshold (rule B3 above), rule B.2. takes precedence over B. 3. and customer iFrame behavior

would be the same as of rule B3. Where no Limepay payment methods are offered for

checkout. Customer must proceed with other payment methods for placing order

8.2.7. Payment Method Description

Limepay display`s a configurable description text ‘Pay upfront or in instalments, using your credit

or debit card’ to the top of the iFrame content once a customer has selected the Limepay payment

method. See below

Merchant may decide to remove or amend the description text through payment methods

configuration from Business Manager

8.2.8. Changing Billing Email / Phone

Limepay accepts customer`s billing address details for rendering the checkout iFrame. Any change

made to billing form fields customer email (for guest user) or billing phone number after checkout

iFrame has been loaded and customer focusses out of the field, iFrame auto refreshes. It does so for

Limepay checkout API to accept the updated email/phone value. Note OTP is sent to phone and

mailbox, and this is the reason why iFrame has to refresh to send codes to the last entered customer

details.

For checking out with pay late payment, customer email address will be auto populated within the

iFrame, whereas customer will have to renter their billing phone number in E164 format (prefixed by

+ [country code]) onto the phone field within the iFrame. Limepay has a future enhancement in

pipeline to auto populate the phone number in E164 onto the iFrame field rather than customer

entering it manually as mentioned above.

8.2.9. Limepay Control Switch

Limepay provides a control switch to turn off Limepay payments for site at checkout and hiding

product/cart widgets. This is based on the preference ‘Limepay Enabled’, setting it as ‘No’ hides all

instances of Limepay widgets and billing payment method on checkout for the site.

Note, for effective display of Limepay widgets and billing payment methods make sure the following

configurations are correct with respect to the storefront currency allowed for the site :

 Preference ‘Limepay Enabled’ is set as ‘Yes’
 Main payment method ‘Limepay’ enabled status is ‘Yes’ i.e, Active

 Main payment method ‘Limepay’ is configured with currency “AUD’ and storefront currency

matches with the same

9. Refunds & Backend Operations

9.1. Refunds

The cartridge provides the ability for merchants to trigger refunds through code. As SFCC does not

offer refund functionality OOB, merchant to implement the following code wherever applicable to

trigger refund

Use the following code hooks to trigger a refund

if (HookMgr.hasHook('limepay.payment.refund')) {
// Invokes Limepay refund hooks

refundResult = HookMgr.callHook('limepay.payment.refund', 'ProcessRefund', order, refundAmount);

}

Function Argument Data Type Value

order dw.order.Order SFCC Order object

refundAmount String Refunding amount

Please refer link for more details

9.2. Payment Flow Processes

It is important to know what backend processes takes place while placing a storefront order through

Limepay. This knowledge gives merchant an idea of adding new customisations wherever required.

The process begins all with rendering the billing payment form in iFrame. The iFrame is loaded when

Limepay payment method at billing section is selected by the customer. At this moment all necessary

billing details that the customer has entered is parsed by the Limepay Checkout API through init() and

render() functions

https://docs.limepay.com.au/openapi/payments/operation/CreateRefund/

File : {merchant_core}\cartridge\js\limepay.js

LimepayCheckout.init({

publicKey: context.publicKey,

email: limepayEmail,

phone: formattedPhoneNo,

customerFirstName: billingDetails.firstName,

customerLastName: billingDetails.lastName,

customerResidentialAddress: billingDetails.customerResidentialAddress,

 customerToken: limepayCustomerToken,

 hidePayLaterOption: context.hidePayLaterOption,

hideFullPayOption: context.hideFullPayOption,

paymentType: context.preselectedPaymentType == 'full' ?

'paycard' : 'payplan',

paymentToken: function (token) {

savePaymentToken(token);

}

});

LimepayCheckout.render({

elementId: 'limepay-cont',

currency: order.orderInfo.currency,

amount: order.orderInfo.amount,

paymentType: context.preselectedPaymentType == 'full' ?

'paycard' : 'payplan',

showPayNow: false,

showPayPlanSubmit: false,

checkoutCSSOverride: context.checkoutCSSOverride,
 primaryColor: limepayPrimaryColor

});

LimepayCheckout.errorHandler(function (err) {

// Handle errors

});

LimepayCheckout.eventHandler(function (event) {

$('body').trigger('limePayment:handleLimePayEvents',

{ event: event });

});

Once customer has filled in all the payment details within the iFrame and advances through all

subsequent stages and clicks on the place order button, then the Limepay submit() API is invoked

LimepayCheckout.submit();

Upon invoking submit(), Limepay generates a payment token for the amount initialized in the init()

call and on success returns to the callback function paymentToken() initialized under the init(). Here

savePaymenToken(token). The purpose of the callback is to save the generated token that is used later

for placing order

LimepayCheckout.init({
.

.

.

paymentToken: function (token) { savePaymentToken(token);
}

});

NB: Changes to order total, billing phone and email needs after iFrame has been rendered and is in

view to customer, the same changes has to parsed again by the checkout API through init() and then

iFrame has to be reloaded through render() function. This is because payment token are generated

based on the order amount that is being declared inside the init(), and OTP has to be sent to the latest

email/phone entered by the customer for pay later payment option. OOTB cart update scenario do

currently invoke the init() and render() methods, however any merchant specific requirement has to

follow the same.

Inside the callback function the the generated payment token and E164 formatted phone number

from customer billing is saved to basket custom attributes. Later on upon clicking the placing order

button from order summary page the same data is copied to order object and then used for the Pay

Order service API.

Next, during place order Limepay executes two service calls one after the other to complete a

transaction, they are Create Order followed by Pay Order API (Refer section 2.3). Make sure during

integration the quota limit related to HTTPClient services are not exceeded that would lead to an error

during checkout.

10. Testing

Important, test with cache ‘enabled’ for the site as product page and quick views are cached. If product

pages are configured for toggle widget, widget rendering is not at all cached in order to reflect the

customer specific toggle state. But when configured for textual widget, widget renders from the usual

product content cache. Cart and checkout pages have no caching so widget or iFrame would always

be respective to current configuration and customer basket state. When testing with cache enabled,

and switching preference values for product widget behavior ‘Limepay Cart Widget Mode’, requires

cache to be cleared each time for rendering the expected widget behavior.

10.1. Checkout with One Time Payment

Add suitable products to cart and proceed by entering shipping details

Customer Billing page

Payment Form

Customer could use the one time payment for checkout as outlined in above section by entering

details onto the respective form. The payment form viewed could be either one according to following

scenarios (based on the group of configurations and customer basket state)

1. ‘Limepay Payment Options’ set as ‘multiple’, basket has no pay later disabled products and cart
total threshold is not exceeded. Customer has set the toggle towards one time payment option

OR

2. ‘Limepay Payment Options’ set as ‘multiple’, basket has pay later disabled products and cart
total threshold is not exceeded

OR

3. ‘Limepay Payment Options’ set as ‘multiple’, basket has no pay later disabled products and cart
total threshold is exceeded

OR

4. ‘Limepay Payment Options’ set as ‘multiple’, basket has pay later disabled products and
cart total threshold is exceeded

Enter the one time settlement card details. Proceed through 3DS page if applicable and click on place

order button to proceed to the order summary page

Order Summary Page

Click the place order button on summary page, to complete the order

Order Confirmation Page

10.2. Checkout with Pay Later Payment

Add suitable products to cart and proceed by entering shipping details

Customer Billing page

Payment Form

Customer could use the pay later payment for checkout as outlined in above section by entering

details onto the respective form. The payment form viewed could be either one according to following

scenarios (based on the group of configurations and customer basket state)

1. ‘Limepay Payment Options’ set as ‘multiple’, basket has no pay later disabled products and

cart total threshold is not exceeded. Customer has set the toggle towards pay later payment

option

OR

2. ‘Limepay Payment Options’ set as ‘splitOnly, basket has no pay later disabled products and

cart total threshold is not exceeded

Enter the pay later payment details. Proceed to subsequent OTP verification stage by clicking on the

‘Review payment plan’ button within the iFrame.

Enter OTP received on billing email & phone number inbox. Then click on ‘Confirm’ button on iFrame

and proceed to next stage

Customer can adjust the payment plan in this stage, and finally check the terms and condition

checkbox before clicking on the place order button to proceed to the order summary page

Order Summary Page

Click the place order button on summary page, to complete the order

3DS Verification during Placing Order

3DS Verification error during Placing Order

Order Confirmation Page

10.3. Test Cards

Refer link, for Limepay test card details

Refer link, for Limepay pay later plan test values

Please check with Limepay for 3DS and other test details

11. Operation, Maintenance

11.1. Availability

In case of problems with the connection to Limepay Payments, please contact Limepay support

Please supply as much information as possible (Merchant account, time, order number,). Also, check

the log files.

11.2. Failover / Recovery Process

In case the Limepay service is unavailable, the user will not be able to checkout using Limepay payment

methods and an error message would be displayed on the checkout pages.

The service availability can be tracked in SFCC using the Service Status.

11.3. Support

In case of problems with the integration, missing features, etc. please contact the Limepay support

12. Appendix

12.1. System Extensions

In addition to the changes mentioned above, the below system extensions were done as part of the

cartridge.

https://docs.limepay.com.au/developer-portal/checkout/custom-integration-v2/#test-card-numbers
https://docs.limepay.com.au/developer-portal/checkout/custom-integration-v2/#setup-a-test-payment-plan-sandbox-only

12.1.1. Order

ID Purpose

limepayOrderId Stores the Limepay order id generated during payment

authorization in Create Order API

limepayPaymentToken Stores the payment token generated at billing used for

completing an order with Pay Order API. Value copied from

equivalent basket attribute during place order.

limepayFormattedPhoneNo Stores the E164 format phone number obtained from billing

details. This is sent in with Pay Order API to complete order

and value is copied from equivalent basket attribute during

place prder.

limepayRefundResponse Stores array of response objects containing refund id and

amount obtained after Create Refund API

12.1.2. PaymentTransaction

ID Purpose

limepayPaymentResponse Stores the response of Pay Order API

12.1.3. Basket

ID Purpose

limepayPaymentToken Stores the payment token generated at billing before

proceeding to order summary page

limepayFormattedPhoneNo Stores the E164 format phone number obtained from billing

details before proceeding to the order summary page

12.1.4. Site Preference

ID

limepayEnabled

limepayClientPublicKey

limepayClientSecretKey

limepayPaymentOptions

limepayMultiOptionDefault

limepayPDPWidgetMode

limepayCartWidgetMode

limepayScriptAPIUrl

limepayCustomerServiceEmail

3DSEnabled

limePayMin3DSAmount

limepayPrimaryColor

applePayDomainAssociation

Refer section for 6.1. for their purpose

12.1.5. Category

ID Purpose

disableLimepayPayLater Stores pay later payment enable/disable status for product

category

12.1.6. Product

ID Purpose

disableLimepayPayLater Stores pay later payment enable/disable status for product

12.1.7 Profile

ID Purpose

limepayCustomerId Stores limepay customer ID

12.2. Locating Code Changes

Developers can locate code changes done for the Limepay integration by searching for the following

comments pattern

JS

// Limepay changes – START

Limepay code changes

// Limepay changes – END

ISML

<!-- Limepay changes - START -->

Limepay code changes

<!-- Limepay changes - END -->

13. Known Issues

No known issues

14. Release History

Version Date Changes

21.1.0 22 June 2021 Initial Release

22.1.0 22 March 2022 2
nd

 Release

22.2.0 26 June 2022 Logged in users - upserting the

Limepay customer details.

Primary color & JS changes.

Enabling and verification of Apple

Pay.

Change of Message and Detail field
for error messages.

22.2.1 04 July 2022 Update documentation

	Contents
	1. Overview
	2. Features
	2.1. Payment Modes
	2.2. Limepay Payment Widget Payment widget for product and cart pages provides the customer a breakdown information of the price between one time and pay later payment modes and thereby providing a means for the customer to opt between the 2 modes for...
	2.3. Limepay 3DS
	2.4. Supported API

	3. Limitations, Constraints
	4. Privacy, Payment
	4. Compatibility
	5. Installation
	5.1. Cartridges
	5.2. Metadata
	5.3. Google Phone Number Library – Node.js extension

	6. Configurations
	6.1. Configuring Site Preferences
	6.2. Configuring Payment Methods

	7. Storefront Code Changes
	7.1. Controller Changes
	COPlaceIOrder.js
	COSummary.js
	COBilling.js
	Account.js
	Login.js

	7.2. Models Changes
	CartModel.js

	7.3. Client Side JS Changes
	billing.js
	productSet.js
	app.js

	7.4. Custom Files
	limepay.js

	7.5. ISML Changes
	billing.isml
	paymentmethods.isml
	cart.isml
	htmlhead.isml
	productsetproduct.isml
	productcontent.isml
	producttopcontentPS.isml

	8. User Guide
	8.1. Custom CSS
	8.2. Limepay Widget

	9. Refunds & Backend Operations
	9.1. Refunds
	9.2. Payment Flow Processes

	10. Testing
	10.1. Checkout with One Time Payment
	Customer Billing page
	OR
	OR
	Order Summary Page

	10.2. Checkout with Pay Later Payment
	Customer Billing page
	OR
	Order Summary Page

	10.3. Test Cards

	11. Operation, Maintenance
	11.1. Availability
	11.2. Failover / Recovery Process
	11.3. Support

	12. Appendix
	12.1. System Extensions
	12.2. Locating Code Changes
	JS
	ISML

	13. Known Issues
	14. Release History

