g\ Limepay

Integration Document

SiteGenesis

Version 22.2.1

e commerce cloud

Limepay for SiteGenesis v22.2.1 Page 1 of 72



Contents

L OVEIVIBW ittt sttt e e st e s bt e st e e s e e e s s a et e s sba e e s sanes 4
2. FRATUIES it a e bbb et e a e e s bae e 4
D O S 1Y o 1T o 1 Y o Yo [PPSR 5
2.1.1. Limepay ONne TiMe PayMENT ......ouiiiiiiiiiiiiteeee ettt e e e s s e e e e e s s aeneeeeeeas 5
2.1.2. Limepay Pay Later PAYmMENT. ... ... ittt aaaaaseaaaees 5

D e T UL o o Yo T <o I 1Y 4 V=T o Y oYL RSP 5

2.2. Limepay Payment WIdZETt .....c.veii ettt ettt e e e tte e e e ebre e e e nbae e e e baee e eeareeas 6
D2 T UT ] Jo T 5 €= A = PP 6

I [0 11 - Y[ ] d FI O] 15 {11 | £ 6
O A AV oV A4 0 1= o | PP PP PPPPROPPRPP 7
B e g Yo - 1 o1 11 A PP 8
D INSEAIIATION Lottt ettt et e s e st e s be e e abe e s be e e sabeesbeeebteesbeeenns 8
LI 0= o g o o PPPPRRN 8
5.2, IMIEEATALA. ettt ettt et e bt e et e e s be e s bt e e s beeebteenateesbaeesares 8
52,0, SEIVICES .eetiieiitiee ettt ettt e et e et e st e e et e e b et e e bt e e e e rae e e e nbeee s e nreeeeenareeas 8
5.2.2, PaYMENE PrOCESSOL e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eeesaseaaeesananns 9
oI B - 1Y o 1T o | o Y 11 Vo o PP 9
5.2, CUSTOMEE GrOUPS coeeeeeeeeeeeeieeeeeeeeeeeeee e ee e e e e ee e e e e e e s e e e e e e e e e e e e e e e eeasesasasasasssasasssssssasesasesasasssasasesesananns 9

5.3. Google Phone Number Library — Node.js eXteNSioN .......ccuvevieciiiiiiiiiie e 10

SR O] o 14U T 1 o LSRR 11
6.1. CoNfigUIING Site Pref@rE@NCES. ... .uiiiieeieee ettt ettt e ettt e e et e e e e bae e e seatbeeeeanaaaeaean 11
6.2. Configuring Payment IMETROAS .....cocviiieiieee e et e e s saree e 14

7. StOrefront Code ChangEeS ......uiii ittt et e e e e e e st e e e e sabee e e esabeaeeesasaeeeennreeas 15
2 B Oo Y o4 o] 11T gl g =T V=T U 15
2 A\, o T 1= @ o = YoV TSP 21
T @ 11=T o A e TR SN @ = o= USRS 23
T4 CUSEOM FIlES ettt ettt et e b e e s bt e s ae e s atesateeabe e beesbeesbeesaeeeaeeentean 32
S T N1V, 1@ o T Yo V-SRI 32

8. USEI GUITE.. .ttt sttt ettt st st s e e bt e bt e s bt e s an e sab e e bt e b e e b e e nbeesbeeeneeenneen 41
8.1, CUSTOM €SS ...ttt st e s e s s e e s s n e e e e s s nr e e e s e nre e e e s rer e e s r e e e e s annnneenan 41
R T a1 o VAT T F =L SR 42
A I o Y= - T VAV T P P ERRRNE 42
8.2.2. TeXtUAI WILEET ..eeeieei ettt e e e e e e e e et te e e e e e e e eennbasaeeeeeeeesnnnrrnns 44
A TR o o Yo LW ot a1V T Fd Y SRRt 44

A B - [ o AV Ao F= =Y PRSP 48



8.2.5. Checkout Content & STAgeS ..cccceeeeiiiiiiee ettt e e e e e e esbarre e e e e e e e esnnnnes 52

8.2.6. Customer Applicable ChecCkoUt VIEW .........coccuieiiiiiiieiiiete et 57
8.2.7. Payment Method DesSCription ......ccuuiiiieciiiii ittt e e e e e ree e e e sbee e s s sareeas 61
8.2.8. Changing Billing EMail / PRONE .....ccvieiieieeecceccte ettt sttt ettt e re s 62
8.2.9. Limepay Control SWILCH .....coiiiii e ree e s e e s s 62

9. Refunds & Backend Operations ........cccueiiieiieii ettt sree e s bee e e sbee e s s sbee e s e sabee e e e sareeas 63
9.0 RETUNGAS ..ttt ettt e st e st e s bt e e sabe e s bt e e sabeesabeeesabeesabeesaneeesareeanns 63
9.2. PAYMENT FIOW PrOCESSES ....vviiieiiiieieiiiieeeitteeeeeitte e e ettt e e e eiate e e e sataeeessataeeessasseeesansaeeesansseeesanssneenan 63
O =T 4 o V- ST TP O PP PP OPPUOPPPPPOPPRE 65
10.1. Checkout with One Time PAymMENt ......ccciiiiiiiiiiiiie e cciiee ettt s rbee e e sree e s e sbee e e e nareeas 66
10.2. Checkout with Pay Later Payment .......ccooiiiiiiieiie ettt e e e e 72
10,3, TOSE CardS . .eeeeeiee ittt ettt ettt b e s bt s bttt s bt et e e s bt e sheesabeeab e et e e bt e abeeeaeeeateebe e bt e sheesaeeea 78
11. Operation, MaiNTENANCE .....iiiii ittt e e e s s et e e e e s s sssaareaeeeeesssaastbeeeeesesssansrnns 78
I O NV 1] T o1 Y2 USSR 78
11.2. FQIlOVEr / RECOVEIY PrOCESS ....vecveeereeteeiteeiteeitteeteesteesteesteestaeebeesbeebeesssesssessseesseesseessessssessseans 78
RS T o] oo o AP PP PPPPPPPPPPPPTPPIRE 78
0 Y o o 1Yo Vo 1 I 78
12,0, SYSEEM EXTENSIONS. ...uuiiiiiiiiiiiiiiieeee e e e e ettt et e e s s e sttt e et e e s sssaabtraeeeessssssnrasaeeeesssssssnrenaaeeeessnnas 78
12,00, OFAOI ettt ettt ettt e ettt e s a e s bt e e s ab e e s b et e s a b e e s be e e bte e s bee e nbeenateesbeeesareenn 79
12.1.2. PaymMeNntTranSaCTiON cuiiiiiiiciiiiieeeeeeeeriiireee e e e s e sttt e e e e s s ssbrreeeeeeessssabnbaeeeeesssssnssssneeeessnnnas 79
12,03 BASKET..cueeeeteeiteeie ettt et sttt et b e e b e sae e et e e beenbeesheesanenas 79
12.0.4. Site PreferenCe.....i it 79
A T 6 1 £ =Y o ] VPP P PP PPPPPPUPPPPPPPRE 80
12,06, PrOGUCTE.c..eiiiiiieeieeeeee et ettt sttt b e s s e n e e r e sreesane e 80
12.2. LoCating Code ChaNGES .......uuiiiiciiie ettt ettt ee e e et e e et ae e e e e ba e e e e eabaee e esabeeeeeenbaeaeennrenas 80
13, KNOWN ISSUBS....ciiiiiiiiiiiiiiii ittt b e s b bbb s e e s saab e e e e 82

I B S LT T I o Ty o] Y 2SR 82



1. Overview

The Limepay payment cartridge enables commerce cloud to integrate with the Limepay payment
service. It offers only non hosted checkout service to storefront. The purpose of the document is to
guide through an easy installation of Limepay payment cartridge onto a commerce cloud store.

The integration is based on the SiteGenesis demo store, provided by SFCC.

The integration consists of an archive with contents as described in the below table.

Name Purpose
cartridges Contains Limepay integration cartridges
cartridges\int_limepay_sg This cartridge contains the SiteGenesis specific changes

required for Limepay integration

cartridges\ int_limepay This cartridge contains the API calls for Limepay

integration and common code

cartridges\limepay_sg changes | This cartridge references all the changes done to OOB

SiteGenesis files. Please do not include this in the cartridge
path and this is for reference purposes only

metadata Contains system object extensions and configurations

required for the integration

documentation Contains this document “Limepay SiteGenesis Integration

Document”

2. Features

The integration described in this document supports the following features:

O O O O O O O O

o O

Limepay one time settlement and pay later instalment payment for checkout

Pay later payment in 4 instalments over a frequency of 2 weeks each

Adjustable initial amount and instalment due dates

Limepay payment widgets on product and cart displays breakdown of prices for one time and pay
later options

Service for transactions in AUD currency

Ability to enable/disable one time payments for store encouraging only pay later payments
Ability to adjust the threshold value for which pay later payments would be allowed for store
Ability for customer to select Limepay payment mode for checkout from product / cart pages
through widget interaction

Ability to disallow certain products or category from pay later payment

Merchant refunds

Ability to perform 3DS transactions.



2.1. Payment Modes

A store can be configured to allow any one of the following Limepay payment options for checkout :

e Onetime and pay later
e Pay later only

2.1.1. Limepay One Time Payment

Limepay one time settlement payment allows customer to pay the whole order total in one go entering
card details (Refer section 2.1.3 for supported cards) and successfully place the order. Payment
details are entered in a Limepay iFrame provided under the payment method section. Merchant can
customize the iFrame through cartridge supported file system. One time payments canbe disabled
throughout for any store through configuration thereby allowing only pay later payment.

2.1.2. Limepay Pay Later Payment

Limepay pay later payment allows customer to pay the order amount in total of 4 instalments each
defaulting to a value of one fourth the order amount due over a period of 2 weeks. However, Limepay
provides the ability for the customer to change the first instalment amount up to a certain extent (as
per Limepay threshold rules) and have the subsequent instalments and their due dates adjusted.
Products and categories can be configured to be disabled for pay later payment at checkout. Merchant
also has the control over the order amount threshold allowing pay later payment. Following scenarios
disqualifies a customer from pay later payment mode at checkout :

e Atleast one pay later disabled product in cart
e Order total exceeds the pay later threshold range*

* Limepay configures the pay later threshold range for a merchant used for checkout. (Refer point 4 under section
8.2.4)

2.1.3. Supported Payment Types

Supported cards by Limepay:

e \Visa
e Mastercard
e American Express

Limepay also provides support to 3DSecure cards

For any other supported cards please check with Limepay



2.2. Limepay Payment Widget
Payment widget for product and cart pages provides the customer a breakdown information of the
price between one time and pay later payment modes and thereby providing a means for the
customer to opt between the 2 modes for checkout. Customers get to know the instalments at
product total or cart total level. Widget gets a toggle state when both payment modes are
configured for the store as mentioned in the above section, allowing the customer to interact and
he/she can preselect a particular payment mode for checkout from product or cart pages. User
toggled state of the widgetis remembered throughout the user session among product/cart widgets
and checkout pages. Widgetgets a simple textual state and calls out the instalment breakdown
when one time is disabled and pay later is only configured for the store. However, cart and product
pages can be configured by merchantto independently display either of the textual or toggle widget
when payment mode selected for the site is one time and pay later. Whereas when payment mode
is configured for only pay later, textual widget takes precedence and toggle widget shall not be
seen anywhere across the storefront user flow.

2.3. Limepay 3DS
Limepay 3DS payments allow brands to perform 3DS transaction via Limepay payment methods.
When place order on review page, an API call made to Limepay for creating payment and SFCC
pass the 3DS true in APl request and Limepay Payment API return a 403 response along a payment action
which requires to perform 3DS challenge by customer. In this case an Popup widget appears on front end
rendered by Limepay and customer have to go through all 3DS verification in Limepay 3DS Popup widget.
Limepay either return error or success after verifying the 3DS that leads to place the order in case of
success and show the error in case of any 3DS challenge failure.

2.4. Supported AP]

API \ Description Relative Endpoint

Creates a new order at
Create Order Limepay system during | /orders
payment authorization

Pay for an order using _ _
Pay Order existingpayment token Jorders/{limepay_order_id}/pay

Create a new refund for
Create Refund Limepaytransaction /refunds

Create a new Limepay
Upsert customer /customers/plugin

Customer

Singn in Limepay Customer
Signin Customer| \jith Customer ID and authn/tenants/accounts:signinCustomerWithCustomerld

generate customer token

Also refer section 5.2.1. for complete endpoint details

3. Limitations, Constraints



Limepay service supports only transactions in AUD currency. Any other site currency is not supported
and or need to be checked with Limepay service team.

4. Privacy, Payment

This integration requires access to the following customer data elements: Billing
Address, Shipping Address, Order Details and Customer Profile.

No credit card details are stored within SFCC using this integration.



4. Compatibility

Compatible with Commerce Cloud Platform Release 21.5, Site Genesis 105.1.1.

5. Installation

5.1. Cartridges
Upload the following cartridges to the code version in Business Manager
e int_limepay

e int_limepay_sg

Configure the cartridge path as shown below by adding to the beginning of the cartridge path

Site Cartridge Path int_limepay_sg:int_limepay

5.2. Metadata

All BM configurations related to the below components have been configured within metadata/site-
template folder

e System object extensions
e Services

e Payment Processors

e Payment Methods

e Customer Groups

Follow the below steps to import the BM configurations for the above-mentioned components

Locate the folder metadata in the installation package

Review the contents within site-template folder

Change the site ID under path site-template\sites to merchant site ID

Archive the folder to ‘site-template.zip’ and the Import the file via Site Import & Export

e S

5.2.1. Services

New service ‘limepay.http.service’ has been added as part the integration

Service ID ‘ Service Profile Service Credential
limepay.http.service limepay.http.profile limepay.http.credentials




Map the URLs for the sandbox and production endpoints as follows
Environment URL

Non-production instances https://api.sandbox.limepay.com.au

Production instances https:// api.limepay.com.au

Service credentials requires no user/password rather refers the public/secret key combinations
mapped to site preferences.

Note : Do not use hyphenated hostnames to access Open Commerce APl (OCAPI) or Storefront while
setting up the URL for the calls made internally for OCAPI and Storefront. Instead of use vanity host
names such as brand.com , www.brand.com etc.

5.2.2. Payment Processor

New payment processor used by the cartridge

Payment Processor ID Purpose

Unified payment processor for processing

LIMEPAY . . .
Limepay one time and pay later transactions

5.2.3. Payment Methods

Two new payment methods are used by the cartridge

Payment Method ID Purpose

Main payment method used for Limepay one time
and pay later checkout

Dummy payment method used for configuring pay
later threshold range. Not used for placing orders.

Limepay

Limepay_instalment

5.2.4 Customer Groups

New dynamic customer group ‘ExcludelimepayPaylater’ is used by the cartridge based on user
storefront custom session attribute. When a customer adds at least one pay later disabled product to
cart he/she gets added to this customer group thereby being disqualified for pay later option at
checkout.


https://api.sandbox.limepay.com.au/
http://www.brand.com/

5.3. Google Phone Number Library — Node.js extension

Limepay checkout APl accepts customer billing country and phone number as input for rendering the
checkout iFrame. A Node.js extension package ‘google-libphonenumber’ is used by the cartridge to
parse these two customer fields resulting in E164 formatted phone number as required by the API.
For this add the node package ‘google-libphonenumber’ to your project package.json dev
dependencies and build

B mrnnnlnctthanhvanannmahas®e WA
google-libphonenumber™: Oy R4 g

"A 11 _O"
4.11.0%,

For example, customer selects billing country as Australia and enters billing phone number as shown
in below image, the library then parses it to E164 format output as +61883942707’ where ‘461’ is
mapped from billing country and the remaining digits from the actual billing phone field. The
formatted number is then passed to Limepay checkout iFrame for rendering and proceeding with
checkout by customer. Note, One Time Password (OTP) SMS are generated by Limepay systems onto
this phone number while proceeding with pay later payment option and is required to be
authenticated by the storefront customer before successfully placing order

* Country Australia v

* State |Australian Capital Territory ”

e Phone | (08)9430 0280

\ Example: 333-333-3333

For more details on ‘google-libphonenumber’ library,

(%
®


https://www.npmjs.com/package/google-libphonenumber

6. Configurations

The below sections explain how to set up the Limepay integration related configurations within

Business Manager

6.1. Configuring Site Preferences

Refer to the following table for the different site preferences used by Limepay integration

Site Preference Value Description

Limepay Enabled Yes Centralized control to turn on/off Limepay
payments for the site

Limepay Client Public | Merchant's Limepay | Key for rendering Limepay payment iFrame

Key public key at checkout page under payment method
section, used by Limepay checkout API. Also
utilized for acquiring payment tokens for
completing an order

Limepay Client Secret | Merchant's Limepay | Key for authenticating a merchant for

Key secret key Limepay service by backend server. Place

order works with correct pair of merchant
specific public/secret keys.

Limepay
Options

Payment

e Full Payment & Split
Payment (multiple)

e Split Payment Only
(splitOnly)

Allowed Limepay payment options for site.
Full Payment & Split Payment provide the
customer with the choice to opt between the
2 for checkout. Whereas Split Payment Only
allows pay later as a payment and no one
time settlements allowed.

Limepay Multi Option
Default

e Full Payment (full)
e Split Payment (split)

This preference is used only when ‘multiple’
is selected for the above preference
‘Limepay Payment Options’. Lets merchants
decide which among the 2 modes would be
defaulted as payment option for a site.

Limepay PDP Widget
Mode

o Textual Message
(textual)

e Toggle Button
(toggle)

Decides product page / quick view Limepay
widget behavior. Toggle button displays
breakdown of one time and pay later options
and allows customer to choose between 2
for checkout. Toggle default state matches to
above preference ‘Limepay Multi Option
Default. Toggle widget is applicable for a site
when both payments are allowed as per
preference ‘Limepay Payment Options'.
However, a merchant may also configure to

display textual widget despite both payments
are allowed. The textual widget shows a




breakdown of pay later payment. When
‘splitOnly’ is configured for ‘Limepay Payment
Options’ irrespective of this preference widget
behavior shall always fall back to textual
mode as customer has no options to choose
between.

Limepay Cart Widget
Mode

o Textual
(textual)

e Toggle
(toggle)

Message

Button

Decides cart page Limepay widget behavior.
Toggle button displays breakdown of one
time and pay later options and allows
customer to choose between 2 for checkout.
Toggle default state matches to above
preference ‘Limepay Multi Option Default.
Toggle widget is applicable for a site when
both payments are allowed as per
preference ‘Limepay Payment Options’.
However, a merchant may also configure to
display textual widget despite both payments
are allowed. The textual widget shows a
breakdown of pay later payment. When
‘splitOnly’ is configured for ‘Limepay Payment
Options’ irrespective of this preference widget
behavior shall always fall back to textual

mode as customer has no options to choose
between.

Lime Pay Script API
URL

(See below)

Limepay APl url for rendering iFrame
payment section at checkout and acquiring
payment token for processing order based
on storefront basket details. This URL works
with merchant’s public key preference
mentioned above

Limepay  Customer | (Marchant email id's) Comma or semi colon separated email id's to
Service Email which Limepay refund failure notification
would be sent
3DS Enabled Yes/No depending on Control to turn off/on the Limepay 3DS
enable/disable 3DS Flow | functionality.
Limepay 3DS Any value in number. Minimum Total Amount added to enable the

Minimum Amount

Limepay 3DS Verification.

Only check if 3DS is enable and see if order
total is greater or equal to this amount then
3DS verification is allowed.

Primary Color

Any Hex Color Code.

Color that loads on Limepay render widget

Apple Pay Domain
Association

Domain Association Code

Used to Limepay Integration with Apple Pay




Environment Limepay Script APl URL

Non-production instances httos://checkout.limepay.com.au/v2/checkout-

v2.1.0.min.js

Production instances https://checkout.limepay.com.au/v2/checkout-
v2.1.0.min.js



https://checkout.limepay.com.au/v2/checkout-v2.1.0.min.js
https://checkout.limepay.com.au/v2/checkout-v2.1.0.min.js
https://checkout.limepay.com.au/v2/checkout-v2.1.0.min.js
https://checkout.limepay.com.au/v2/checkout-v2.1.0.min.js

6.2. Configuring Payment Methods

Refer below table for configuring Limepay payment methods

Payment

Payment Method :

Payment Method

Description

Method Setting
Enabled

Limepay
Yes

Limepay_instalment
Yes

Though Limepay_instalment
is a dummy payment method
it requires to be enabled to
allow threshold price range
validation by storefront.
However the same payment
method has been skipped
from rendering as a payment
method at checkout.

Payment
Processor

LIMEPAY

Do not configure

Only payment method used
for checkout is ‘Limepay’ and
is mapped to a valid
processor.
‘Limepay_instalment’ is only
for configurations

Min/Max
Payment Ranges

Do not configure

Min/Max payment
ranges allowed for pay
later payment (Use the
min/max range
provided by Limepay)

Do not configure the min/max
payment ranges for ‘Limepay’
as it is the main payment
method used to place orders.
Set it for supported AUD
currency against
‘Limepay_instalment’ to limit
payment range allowed for

requirements

pay later.

Currencies AUD AUD Please configure the
applicable currencies based
on your requirements.

Countries Based on | Based on requirements | Please configure the

applicable countries based on
your requirements.




7. Storefront Code Changes

Make the following code changes on your SiteGenesis cartridge to integrate with Limepay

7.1. Controller Changes

COPlacelOrder.js

File : (merchant_controllers)\cartridge\controllers\COPlaceOrder.js

1. Add the below code changes to the function, handlePayments(order)



// Limepay, return response error to checkout page - STARTif (authorizationResult.error &&
authorizationResult.PlaceOrderError) {return {

error: true,

PlaceOrderError: authorizationResult.PlaceOrderError

}s

}

// Limepay, return response error to checkout page - EN



Below the following lines



Transaction.wrap(handlePaymentTransaction);
} else {

var authorizationResult = PaymentProcessor.authorize(order,
paymentInstrument);



Changes to reflect as shown below

tor (var 1 = @; i < paymentInstruments.length; i++) {
var paymentInstrument = paymentInstruments[i];

if (PaymentMgr.getPaymentMethod(paymentInstrument.getPaymentMethod()).getPaymentProcessor() === null) {
Transaction.wrap(handlePaymentTransaction);
} else {

var authorizationResult = PaymentProcessor.authorize(order, paymentInstrument);

/ Limepay, return response error to checkout page - START
if (authorizationResult.error && authorizationResult.PlaceOrderError) {
return {
error: true,
PlaceOrdertError: authorizationResult.PlaceOrderError

I

}

// Limepay, return response error to checkout page - END

if (authorizationResult.not_supported || authorizationResult.error) {
return {

error: true
3}

Ja

/ Limepay, return response error to checkout page - START
if(handlePaymentsResult.error &&
handlePaymentsResult.PlaceOrderError) { return Transaction.wrap(function () {
OrderMgr.failOrder(order); return {
error: true,
PlaceOrderError: handlePaymentsResult.PlaceOrderError
}s
1)
b

/ Limepay, return response error to checkout page - END

Add the below code changes to the function, start()




Below the following lines

if (lorder) {
app.getController('Cart').Show();

return {};

)
Oa{;handlePaymentsResult = handlePayments(order);

Changes to reflect as shown below

if (lorder) {
// TODO - need to pass BasketStatus to Cart-Show ?
app.getController('Cart"’).Show();

return {};

}

var handlePaymentsResult = handlePayments(order);

// Limepay, return response error to checkout page - START
if(handlePaymentsResult.error && handlePaymentsResult.PlaceOrderError) {
return Transaction.wrap(function () {
OrderMgr.failOrder(order);
return {
error: true,
PlaceOrderError: handlePaymentsResult.PlaceOrderError
5
}s
}

// Limepay, return response error to checkout page - END

‘f (handlePaymentsResult.error) {
return Transaction.wrap(function () {
OrderMgr.failOrder(order);

A

3. Add 3DS payment condition to send payment action result on front end.

......................

o) else if (handlePaymentsResult.paymentResult) {
//Linepay 3ps Response
return {
paymentResult: handlepaymentsResult,
threeDSURL: URLUtils.url('Limepay-Limepay3DS', 'threeDSCallback', true, 'OrderNo’, order.orderio).toString()

i



AddANC Do oo YRR SR SR PRSI G | |G ORI Y T SR |

//Add LimePay 3DS if 3DS redirect is enabled
var paymentResult = auth

1f (paymentResult && paymentResult,threeDsRedirect) {
return {

A AR PP PP AT PR

threeDSURL: URLUtils.url(’Limepay-Limepay3Ds’, 'threeDscallback’, true, 'Orderto’, order.orderfio).tostring()

¥

COSummary.js

File : (merchant_controllers)\cartridge\controllers\COSummary.js

f{:-c.b:
* Renders the order confirmation page after successful order
* creation. If a nonregistered customer has checked out, the confirmation page
* provides a "Create Account" form. This function handles the
* account creation.
)
function showConfirmation(order) {
if (!customer.authenticated) {
// Initializes the account creation form for guest checkouts by populating the first and last name with the
// used billing address.
var customerForm = app.getForm('profile.customer’);
customerForm. setValue('firstname', order.billingAddress.firsthame);
lastname', order.billingAddress.lasthame);
email’, order.customerEmail);
orderflo’, order.orderlo);

customerForm. setValus(
customerForm. setValue(
customerForm. setValus(

app.getForm('profile.login.passwordconfirm’).clear();
app.getForm( 'profile.login.password").clear();

var pageMeta = require('~/cartridge/scripts/meta’);
pagelleta.update({pageTitle: Resource.msg(’confirmation.meta.pagetitle’, 'checkout', 'SiteGenesis Checkout Confirmation')});
app.getView({

Order: order,

ContinueURL: URLUtils.https('Account-RegistrationForm') // nzeded by registration form after anonymous checkouts
}).render(’ checkout/confirmation/confirmation');

COBilling.js

File : (merchant_controllers)\cartridge\controllers\COBilling.js

Add below code in function returnToForm



customerToken = '';
limepayEnabled limepayUtilsHelpers ntEnabled
if (limepayEnabled) {
customer. authenticated
profile = app.getModel('Profile').get();
yar LimepayCustomerId = profile.object.custom. limepayCustomerld;
if (limepayCustomerId) {

var response = limepaySignInCustomerWithCustomerld.signInlLimepayCustome stomerId(limepayCustomerId);
if (response.ok && response.object) {
customerToken = response.object.customToken;

app. ¢ ew(Te e('~/cartridge/scripts/object'). extend(params
LlimepayCustomerToken: customerToken
Basket: cart.object
ContinueURL: URLUtils.https('COBilling-Billing"'
.render('checkout/billing/billing');

LlimepayCustomerToken: customerToken

Basket: cart.object

ContinueURL: URLUtils.https('COBilling-Billing')
}) .render( 'checkout/billing/billing');

Account.js

File : (merchant_controllers)\cartridge\controllers\Account.js

Add below code in function registrationForm() after

profileValidation = Customer.createAccount(email, password, app.getForm('profile'));

var limepayEnabled = limepayUtilsHelpers.isLi avPaymentEne
if (limepayEnabled)
var customer = CustomerMgr.getCustomerBylogin(email);
if (customer) {

limepaylUpsertCustomerService. upsertl imepayCustomer(customer) ;

Login.js

File : (merchant_controllers)\cartridge\controllers\Login.js



Add Below code in function handleLoginForm () before

loginForm.clear();



var LlimepayEnabled = limepayUtiISHelperg.iéLimepc
if (limepayEnabled
var email = loginForm.getValue('username');

var customer = CustomerMgr.getCustomerBylogin(email);

aymentEnabled() ;

var limepayCustomerld = customer.profile.custom. limepayCustomerld;
if (!limepayCustomerId) {

limepayUpsertCustomerService. upsertl imepayCustomer(customer) ;

}
7.2. .
Models Changes

CartModel.js

File : (merchant_controllers)\cartridge\scripts\models

1. Add the below code changes to the function, calculate()



// Limepay changes - START updatePaylLaterElligibility(this.object);
// Limepay changes - END



Below the following lines



calculate: function () { dw.system.HookMgr.callHook('dw.ocapi.shop.basket.calculate',
‘calculate', this.object);



Changes to reflect as shown below

L
calculate: function () K
dw.system.HookMgr.callHook( "'dw.ocapi.shop.basket.calculate’, 'calculate’, this.object);

// Limepay changes - START
updatePayLaterElligibility(this.object)ﬂ
// Limepay changes - END

g

var cart = this;

\\\:fdproductToCart: function() {




Add the following NEW Function definition towards the end of file before line
module.exports = CartModel;

// Limepay changes - START

/**
* Iterate bastket to find any diqualifying item Limepay pay later option
* and update customer session
* @param {object} basket The basket containing the elements which are
looped to find elligibility
*/
function updatePaylLaterElligibility (basket) {
var limepayUtilsHelpers = require('*/cartridge/scripts/helpers/
limepayUtilsHelpers');
var disablelimepayPaylLater = false;
if (!basket.getGiftCertificateLineItems().isEmpty()) {
// Gift certificates always disqualifies pay later option
disablelLimepayPaylLater = true;
}
var productLineItems = basket.getAllProductLineItems();
if (!disablelLimepayPaylLater && !empty(productLineItems)) {
// If no gift certificates, iterate product line items
for (var i = 0; i < productLineItems.length; i++) {
var product = productlLineItems[i].product;
if (limepayUtilsHelpers.excludeProductPayLater(product)) {
disablelLimepayPaylLater = true;
break;

}
if (disablelLimepayPaylLater &&

Isession.custom.disableLimepayPayLater) {
// Set session attribute value
session.custom.disablelLimepayPaylLater = true;
} else if (!disableLimepayPaylLater &&
"disableLimepayPayLater' in session.custom) {
// Clear session attribute value
delete session.custom.disablelLimepayPayLater;

}

}
// Limepay changes - END



7.3. Client Side JS Changes

billing.js

File : (merchant_core)\cartridge\js\pages\checkout\billing.js

1. Add the below code changes to the global variable set at the top of the file



limepay = require('../../limepay');



Below the following lines



'use strict’;
/* eslint-disable */

var ajax = require('../../ajax"'), formPrepare = require('./formPrepare"’),giftcard = require('../../gift



Code changes to reflect as shown below

‘use strict’;
/* eslint-disable */

var ajax = require('../../ajax"),
formPrepare = require('./formPrepare'),
giftcard = require(’../../giftcard’),
util = require('../../util’),
limepay = require('../../limepay');

/it
s @functiod
* @description Fills the Credit Card form with the passed data-|
* @param {Object} data The Credit Card data (holder, type, mask
'
“unction setCCFields(data) {
var $creditCard = $('[data-method="CREDIT_CARD"]");
‘reditCard.find('input[name$="creditCard_owner"]").val(data




2. Add the below code changes to the function, updatePaymentMethod(paymentMethodID)



// Limepay changes - START

var $submitBillingFormButton = $('button[name=dwfrm_billing save]');
$submitBillingFormButton.removeClass('hide');

if (paymentMethodID && 'Limepay' === paymentMethodID) {
$submitBillingFormButton.addClass('hide");
$('body').trigger('limePayment:handlePaymentTabEvents');

} else {
$('.limepay-submit-payment"').remove();
}

// Limepay changes - END



Below the following lines



if ($selectedPaymentMethod.length === 0) {

$selectedPaymentMethod = $('[data-method="Custom"]");

}

$selectedPaymentMethod.addClass( ' payment-method-expanded"');

// ensure checkbox of payment method is checked
$('input[name$="_selectedPaymentMethodID"]").removeAttr('checked");
$('input[value=" + paymentMethodID + ']').prop('checked', 'checked');



Code changes to reflect as shown below

»selectegraymentmetnoa = »( |Oata-metnoa= Lustom | );

}
$selectedPaymentMethod.addClass('payment-method-expanded');

// ensure checkbox of payment method is checked
$( 'input[name$="_selectedPaymentMethodID"]").removeAttr(‘checked");
$( input[value=" + paymentMethodID + ']').prop('checked’', ‘checked');

// Limepay changes - START

var $submitBillingFormButton = $('button[name=dwfrm_billing_save]');

$submitBillingFormButton.removeClass('hide");

if (paymentMethodID && ‘Limepay’' === paymentMethodID) {
$submitBillingFormButton.addClass('hide');
$('body').trigger('limePayment:handlePaymentTabEvents');

} else {
$('.limepay-submit-payment').remove();

}
// Limepay changes - END

‘~epare.validateForm();




3. Add the below code changes to init() function



// Limepay changes - STARTlimepay.init();
// Limepay changes - END



Below the following lines



var $selectPaymentMethod = $('.payment-method-options"');

var selectedPaymentMethod = $selectPaymentMethod.find(':checked")
val();
formPrepare.init({
formSelector: 'form[id$="billing"]', continueSelector: '[name$="billing save"]'

})s



Changes to reflect as shown below

R i R D T o R T I

var selectedPaymentMethod = $selectPaymentMethod.find(':checked').val();

formPrepare. init({
formSelector: 'form[id$="billing"]’,
continueSelector: ‘[name$="billing_save"]'

0

// Limepay changes - START
limepay.init();
// Limepay changes - END

// default payment method to ‘CREDIT_CARD'

updatePaymentMethod((selectedPaymentMethod) ? selectedPaymentMethod : 'CREDIT_CARD');

$selectPaymentMethod.on('click’, 'input[type="radio"]', function () {
updatePaymentMethod($(this).val());




4. Add the below code changes to the end of event listener
$addGiftCert.on('click', function (e) {



// Limepay changes - START

// On gift certificate redemption, update Limepay form
$('body').trigger('limePayment:updateLimePayOrderAmount");
// Limepay changes - END



Below the following lines



if (fail) {

$error.html(msg);return;

} else {
window.location.assign(Urls.billing);

}



Code changes to reflect as shown below

$addGiftCert.on( click’, function (e) {
e.preventDeFault()d
var code = $giftCertCode.val(),
$error = $checkoutForm.find('.giftcert-error');
if (code.length === @) {
$error.html(Resources.GIFT_CERT_MISSING);
return;

}

var url = util.appendParamsToUrl(Urls.redeemGiftCert, {giftCertCode: code, format: "ajax'});
$.getISON(url, function (data) {
var fail = false;
var msg = '°;
if (!data) {
msg = Resources.BAD_RESPONSE;
fail = true;
} else if (!data.success) {
msg = data.message.split(’<’).join( &1t;").split(">").join("8gt;");
fail = true;

}
if (fail) {
$error.html(msg);
return;
} else {
window.location.assign{Urls.billing);

}

// Limepay changes - START
// On gift certificate redemption, update Limepay form
$('body").trigger (" limePayment:updatelimePayOrderAmount’);
// Limepay changes - END

O H

an('click’, function (e) {
NafanlHy.




5. Add the below code changes to the end of event listener

$addCoupon.on('click', function (e) {

/ Limepay changes - START

/ On successful coupon addition, update Limepay form
$('body").trigger('limePayment:updateLimePayOrderAmount');
%(\Limepay changes - END

Below the following lines

if (data.success && data.baskettotal === 0) {

window.location.assign(Urls.billing);

I

Code changes to reflect as shown below

$addCoupon
e.preve

ick', function (e) {

0 1t();

var $error = $checkoutForm.find('.coupon-error'),
code = $couponCode.val();

if (code.length === 8) {
serror.html(Resources.COUPON_CODE_MISSING);

return;

efal

util.appendParamsToUrl(Urls.addCoupon, {couponCode: code, format: ‘'ajax'});
i(url, function (data) {
var fail = false;
var msg = '';
if (!data) {
msg = Resources.BAD_RESPONSE;
fail = true;
} else if (!data.success) d
msg = data.message.split('<').join('&1t;").split('>").join("&gt;");
fail = true;

if (fail) {
$error.html(msg);

return;

/basket check for displayi otal of the basket is

0 a

/this will force a page on a parameter message

, update Limepay form
imePayment:updateLimePayOrderAmount');
s - END

$('body’)




6. Add below changes for 3DS initialization

// Limepay changes - START
limepay.init()};
// Limepay changes - END

if ($isPaymentMethodLimePay && $isLimepay3DSEnabled) {
// Flag to identify if order needs to be submited or not;
window.submitOrder = false;

$( ' form.submit-order').submit(function {e) {
if (lwindow.submitOrder) {
e.preventDefault();
var $submitOrder = $(this);
var $orderSubmirURL = $submitOrder.attr(’action’);
SorderSubmirURL = util.appendParamsToUrl{$orderSubmirURL, {format: 'ajax'});
$.ajax({
url: %orderSubmirURL,
type: 'POST’,
success: function (data) {
if (data.error || data.orderNo) {
window.submitOrder = true;
$orderSubmirURL = util.removeParamFromURL(%orderSubmirURL, ‘format'};
$orderSubmirURL = util.appendParamsToUrl{$%orderSubmirURL, data);
$orderForm.attr('action’, $orderSubmirURL);
f$orderForm.find( 'button[name="submit"]").click();
/{ error handling
} else if (data.threeDSURL) {
var paymentResult = data.paymentResult || {};

if (paymentResult.paymentiActionRequired) {
limepay.initlLimePay3DS(data);

}J
error: function (err) {
window.location.href = URLs.cartShow;
}
1s

1



productSet.js

File : (merchant_core) \cartridge\js\pages\product\productSet.js

1. Add the below code changes to the end of event listener

$productSetList.on('click", '.product-set-item .swatchanchor',
function (e) {

// Limepay changes - START

// Sync Limepay toggle widget state for remaining product set items
if ($container.find('.limepay-option').length > @) {

var $currentToggle = $container.find('.limepay-
switch input[name=limepay-selection]');

var currentToggleSelection = $currentToggle.prop('checked') ? 'split
' "full';

$('.limepay-switch input[name=1limepay-
selection]').not($currentToggle).prop('checked"’,
currentToggleSelection == 'split' ? true : false);

if (currentToggleSelection == 'full') {

$('.limepay-pay-onetime").not($container.find(".limepay-pay-
onetime')).addClass('active');
$('.limepay-payin-four').not($container.find("'.limepay-payin-

four')).removeClass('active');

} else {

$('.limepay-pay-onetime').not($container.find(".limepay-pay-
onetime')).removeClass('active');
$('.limepay-payin-four').not($container.find("'.limepay-payin-

four')).addClass('active');

}

}
// Limepay changes - END

Below the following lines



callback: function () {

updateAddToCartButtons();tooltip.init();



Code changes to reflect as shown below

, function (e) {

able')) { return; }

-limepay
la = $conta

» currentToggleSelection == "split

2 true :

fa

app.js
File : (merchant_core) \ cartridge\js\app.js

1. Addthe new event listener code changes to the end of function, initializeEvents()




// Limepay changes - START

// Limepay toggle widget event

$('body').on('change', '.limepay-widget input#limepay-selection', function () {
var selectedToggle = $(this);

$('.limepay-pay-onetime').toggleClass('active');
$('.limepay-payin-four').toggleClass('active');

// Synchronize remaining page limepay toggles, based oncurrent one

// For product sets

$('.limepay-widget input#limepay-selection').not(selectedToggle)
.prop("checked", selectedToggle.prop("checked"));var userToggleSelection = $('input[name=1limepay-
selection]').is(':checked") ? 'split' : 'full';

var saveSelectionURL = $('input[name=limepay-selection]').data( 'selectionurl’);
saveSelectionURL = saveSelectionURL + '?limepayToggle=' +userToggleSelection;



$.ajax({

url: saveSelectionURL, success: function(data) {
}

})s

})s
// Limepay changes - END

Below the following lines

$('.user-account').on('click"', function (e) {e.preventDefault();
$(this).parent('.user-info').toggleClass('active');
1

Code changes to reflect as shown below

Py -UDSEr-gLLOUNL J.UMN{ CLILK , TunLLion () {
e.preventDefault();
$(this).parent(’.user-info').toggleClass( active');

1 H

// Limepay changes - START

// Limepay toggle widget event

$('body").on('change’, '.limepay-widget input#limepay-selection', function () {
var selectedToggle = $(this);
$( " .limepay-pay-onetime’).toggleClass( active');
$(" .limepay-payin-four').toggleClass( active’);

// Synchronize remaining page limepay toggles, based on current one
// For product sets

$(" .limepay-widget input#limepay-selection’).not(selectedToggle).prop(“checked”, selectedToggle.prop(“checked"));

var userToggleSelection = $('input[name=limepay-selection]’).is(':checked’) ? ‘split’ : "full‘;
var saveSelectionURL = $('input[name=limepay-selection]’).data( selectionurl”);
saveSelectionURL = saveSelectionURL + '2?limepayToggle=" + userToggleSelection;

$.ajax({
| url: saveSelectionURL,
success: function(datz) {
\ }
I3 H

I H
‘f Limepay changes - END




7.4. Custom Files

Limepay.js
int_limepay_sg\cartridge\controllers\Limepay.js

limepay.js

This new file has to be added to the merchants core cartridge
Copy the file from
limepay_sg_changes\cartridge\js\limepay.js

and place it under

(merchant_core)\cartridge\js\

7.5. ISML Changes

billing.isml

File : (merchant_core)\cartridge\templates\default\checkout\billing\billing.isml



<iscomment>Limepay changes - START</iscomment>
<isinclude template="limepay/limepaycheckoutinclude" />
<iscomment>Limepay changes - END</iscomment>

1. Add the below code changes towards the end of file



Code changes to reflect as shown below

SULV CLidd5= TUMM-Ir'ow TUrm-row-vuLLun 2 \
<button class="button-fancy-large"” type="submit"

</div>

<input type="hidden" name="${dw.web.CSRFProtection.getTok.

</form>

<isscript>
importScript(“util/ViewHelpers.ds");
var addressForm = pdict.CurrentForms.billing.billingAddress.ac
var countries = ViewHelpers.getCountriesAndRegions(addressForn
var json = JSON.stringify(countries);

</isscript>

<script>window.Countries = <isprint value="${json}" encoding="off"

<iscomment>Limepay changes - START</iscomment>
<isinclude template="limepay/limepaycheckoutinclude” />
<iscomment>Limepay changes - END</iscomment>

‘isdecorate>




paymentmethods.isml

File : (merchant_core)\cartridge\templates\default\checkout\billing\paymentmethods.isml

1. Add the below code changes inside the first <isif condition



<iscomment>Limepay changes - START</iscomment>
<isscript>

var limepayUtilsHelpers = require('*/cartridge/scripts
/helpers/limepayUtilsHelpers');

var islLimepayCheckoutAllowed = limepayUtilsHelpers
.limepayCheckoutAllowed();

</isscript>

<iscomment>Limepay changes - END</iscomment>



Below the following lines



<iscontent type="text/html" charset="UTF-8" compact="true"/>
<iscomment> TEMPLATENAME: paymentmethods.isml </iscomment>
<isinclude template="util/modules"/>

<isif condition="${pdict.OrderTotal > 0}">



Code changes to reflect as shown below

!iscontent type="text/html" charset="UTF-8" compact="true"/>
(iscomment> TEMPLATENAME: paymentmethods.isml </iscomment>
{isinclude template="util/modules”/>

(isif condition="${pdict.OrderTotal > @}">

oSiscomment>Limepay changes - START</iscomment>
<isscript>
var limepayUtilsHelpers = require('*/cartridge/scripts/helpers/limepayUtilsHelpers’);
var isLimepayCheckoutAllowed = limepayUtilsHelpers.limepayCheckoutAllowed();
. </isscript>
. Siscomment>Limepay changes - END</iscomment>

___<fieldset>

<legend>

${Resource.msg('billing.paymentheader’, ‘checkout’,null)}

<div class="dialog-required”> <span class="required-indicator">&#8226; <em>${Resou
</legend>




Add and update the existing code inside the div container as shown below
<div class="payment-method-options form-indent">

<iscomment>Limepay changes - START</iscomment>

<isif condition="${paymentMethodType.value.
equals('Limepay_instalment')}"><iscontinue/></isif>
<isif condition="${paymentMethodType.value.equals('Limepay') &&
lislLimepayCheckoutAllowed}">
<iscontinue/>
<iselseif condition="${paymentMethodType.value.equals('Limepay")
&& islLimepayCheckoutAllowed}">
<isinclude template="limepay/paymentmethodinput” />
<iselse/>
<div class="form-row label-inline">
<isset name="radioID" value="${paymentMethodType.value}"
scope="page"/>
<div class="field-wrapper">
<input id="is-${radioID}" type="radio" class="input-

radio" name="${pdict.CurrentForms.billing.paymentMethods.selectedPaymentMethod
ID.htmlName}" value="${paymentMethodType.htmlValue}" <isif condition="${paymen
tMethodType.value == pdict.CurrentForms.billing.paymentMethods.selectedPayment
MethodID.htmlValue}">checked="checked"</isif> />

</div>
<label for="is-${radioID}"><isprint value="${Resource.
msg(paymentMethodType.label, 'forms',null)}"/></label>
</div>
</isif>
<iscomment>Limepay changes - END</iscomment>



<div class="payment-method-options form-indent">

<isloop items="${pdict.CurrentForms.billing.paymentMethods.selectedPaymentMethodID.options}" var="payme
<iscomment>Ignore GIFT_CERTIFICATE method, GCs are handledseparately before other payment methods.</isc
<isif condition="${paymentMethodType.value.equals(dw.order. PaymentInstrument.METHOD GIFT CERTIFICATE)}
</isif>

Below the following lines



Code changes to reflect as shown below

<div class="payment-method-options form-indent™>
<isloop items="${pdict.CurrentForms.billing.paymentMethods.selectedPaymentMethodID.options}" var="paymentMethodType">

<iscomment>Ignore GIFT_(ERTIFICA* method, GCs are handled separately before other payment methods.</iscomment>
<isif condition="${paymentMethodType.value.equals(dw.order.PaymentInstrument.METHOD_GIFT_CERTIFICATE)}"><iscontinue/></isif>

<iscomment>Limepay changes - START</iscomment>
<isif condition="${paymentMethodType.value.equals('Limepay_instalment’)}"><iscontinue/></isif>
<isif condition="${paymentMethodType.value.2quals('Limepay') && !islLimepayCheckoutAllowed}">
<iscontinue/>
i 'w:'{sinclude template="1limepay/paymentmethodinput™ />
<iselse/>
<div class="form-row label-inline">
<isset name="radioID" value="${paymentMethodType.value}" scope="page"/>
<div class="field-wrapper"”>
<input id=-"is-${radioID}" type="radio™ class="input-radio" name="${pdict.CurrentForms.billing.paymentMethods.selectedPayment
</div>
<label for="is-${radioID}"><isprint value="${Resource.msg(paymentMethodType.label, forms',null)}"/></label>
</div>

</isif>

<iscomment>Limepay changes - END</iscomment>

“isloop>

3. Add the below code changes to the custom processor section



<iscomment>Limepay changes - START</iscomment>

<isif condition="${isLimepayCheckoutAllowed}">

<isinclude template="limepay/paymentmethod" sf-toolkit="on" />
</isif>

<iscomment>Limepay changes - END</iscomment>



Below the following lines



<div class="bml-terms-and-conditions form-caption">

<iscontentasset aid="bml-tc"/>

</div>

<div class="form-row form-caption">

<isinputfield formfield="${pdict.CurrentForms.billing. paymentMethods.bml.termsandconditions}" type="ch
</div>

</div>



Code changes to reflect as shown below

NASANPULI AL AU TW N AR AT P PMAL L LU 1 IR W D s UL AL LIS e POy IS L R LI s UL e D

<div class="bml-terms-and-conditions form-caption™>
<iscontentasset aid="bml-tc"/>
</div>

<div class="form-row form-caption™>
<isinputfield formfield="${pdict.CurrentForms.billing.paymentMethods.bml.termsandc
</div>

</div>

| <iscomment>Limepay changes - START</iscomment>
<isif condition="${isLimepayCheckoutAllowed}">
<isinclude template="limepay/paymentmethod” sf-toolkit="on" />
</isif>
<iscomment>Limepay changes - END</iscomment>

<iscomment>
Custom processor

‘mment>

cart.isml

File : (merchant_core)\cartridge\templates\default\checkout\cart\cart.isml

1. Add the below code changes to the top include section



<iscomment>Limepay modules</iscomment>
<isinclude template="limepay/util/modules” />



Below the following lines



<iscontent type="text/html" charset="UTF-8" compact="true"/>

<isdecorate template="checkout/cart/pt_cart">
<isinclude template="util/modules” />
<isinclude template="util/reporting/ReportBasket.isml" />



Code changes to reflect as shown below

:iscontent type="text/html" charset="UTF-8" compact="true"/>
:isdecorate template="checkout/cart/pt_cart">

<isinclude template="util/modules” />

<isinclude template="util/reporting/ReportBasket.isml" />

___<iscomment>Limepay modules</iscomment>
_<isinclude template="limepay/util/modules” />

<isset name="enableCheckout" value="${pdict.EnableCheckout}" scope="
<isif condition="${dw.system.Site.getCurrent().getCustomPreferenceValue('enab

2. Add the below code changes above the last ‘cart-actions’ div container
<div class="cart-actions">

<iscomment>Limepay payment options widget - START</iscomment>

<isscript>

var limepayUtilsHelpers = require('*/cartridge/scripts/helpers/lim
epayUtilsHelpers');

// Preferred cart widget display mode

var cartWidgetDisplayMode = limepayUtilsHelpers.getlLimepayWidgetDi
splayMode('cart');

var excludePayLaterForCustomer = limepayUtilsHelpers.isPaylLaterExc
ludedForCustomer();

var bnpCartThresholdExceeds = limepayUtilsHelpers.bnplContextThres
holdExceeds('cart');

// Rendering widget display mode based on current basket products
& threshold

var userWidgetDisplayMode = excludePaylLaterForCustomer || bnpCartT
hresholdExceeds ? 'hidden' : cartWidgetDisplayMode;
</isscript>

<islimepaypaymentwidget context="${'cart'}" amount="¢${orderTotalValue.
decimalValue}" currency="${session.currency.currencyCode}" widgetmode="${userW
idgetDisplayMode}" />

<iscomment>Limepay payment options widget - END</iscomment>



Below the following lines



<iselseif condition="¢{pdict.CouponStatus != null &&pdict.CouponStatus.error}">

<div class="error">

${Resource.msgf('cart.' + pdict.CouponStatus.code, 'checkout', null, pdict.CurrentForms.cart.couponCode
</div>

</isif>

</div>

</div>

<input type="hidden" name="${dw.web.CSRFProtection. getTokenName()}" value="${dw.web.CSRFProtection.gen

</fieldset>
</form>



Code changes to reflect as shown below

s="cart-actions™>

htmlhead.isml

File : (merchant_core) \cartridge\templates\default\components\header\htmlhead.isml

1. Add the below code changes to the end of file



<!-- Limepay UI -->
<link rel="stylesheet" href="${URLUtils.staticURL("'/css/limepay.css')}" />



Code changes to reflect as shown beloiw

<1s1t conadition="3%{ Googleveriticationiag 1n dw.System.S1Te.current.preter.
<meta name="google-site-verification" content="<isprint value="${dw.systen
</isif>

<iscomment>Gather device-aware scripts</iscomment>

<isinclude url="${URLUtils.url( 'Home-SetLayout')}"/>

Gl Limepay UI -->

“link rel="stylesheet" href="${URLUtils.staticURL('/css/limepay.css')}" /}

productsetproduct.isml

File : (merchant_core)\cartridge\templates\default\product\components\productsetproduct.isml

1. Add the below code changes beneath the following line
<isinclude template="product/components/pricing"/>



<iscomment> Limepay Product Widget - START </iscomment>

<isif condition="${pdict.isSet}">

<isset name="limepayPartOfProductSet" value="${true}"scope="pdict" />
<isinclude template="limepay/limepayproductwidget" />

</isif>

<iscomment> Limepay Product Widget - END </iscomment>



Code changes to reflect as shown below

<1scomment>
product pricing

</iscomment>

<isinclude template="product/components/pricing”/>

<iscomment> Limepay Product Widget - START </iscomment>

<isif condition="${pdict.isSet}">
<isset name="limepayPartOfProductSet" value="${true}" scope="pdict" />
gisinclude template="limepay/limepayproductwidget™ /é

</isif>

<iscomment> Limepay Product Widget - END </iscomment>

<isif condition="${pdict.isSet}">
<isinclude template="product/components/promotions”/>
<if>




productcontent.isml

File : (merchant_core) \cartridge\templates\default\product\productcontent.isml

1. Add the below code changes beneath the following line
<isinclude template="product/components/pricing"/>



<iscomment> Limepay Product Widget - START </iscomment>

<isinclude template="limepay/limepayproductwidget" />
<iscomment> Limepay Product Widget - END </iscomment>



Code changes to reflect as shown below

¢(iscomment>
product pricing \

¢/iscomment>

¢isset name="showTieredPrice"” value="${true}"” scope="page"/>
¢isinclude template="product/components/pricing”/>

¢iscomment> Limepay Product Widget - START </iscomment>
¢isinclude template="limepay/limepayproductwidget” />
¢iscomment> Limepay Product Widget - END </iscomment>

=set name="pam" value="${pdict.Product.getAttributeModel()}" scope="page"/>
t name="group" value="${pam.getAttributeGroup( 'mainAttributes’)}" scope="page"/>

producttopcontentPS.isml

File : (merchant_core)\cartridge\templates\default\product\producttopcontentPS.isml

1. Add the below code changes beneath the following line
<isinclude template="product/components/pricing"/>



<iscomment> Limepay Product Widget - START </iscomment>
<isinclude template="limepay/limepayproductwidget"” />
<iscomment> Limepay Product Widget - END </iscomment>



Code changes to reflect as shown below

<iscomment>
product set price

</iscomment>

<label>${Resource.msg('product.setpricelabel’, 'product’,null)}</label
<isinclude template="product/components/pricing"/>
<iscomment> Limepay Product Widget - START </iscomment>
<isinclude template="limepay/limepayproductwidget™ />
<iscomment> Limepay Product Widget - END </iscomment>
<isif condition="${pdict.isSet}">
<button id="add-all-to-cart" type="submit" value="${Resource.msg(
${Resource.msg('global.addalltocart’, 'locale’,null)}
</button>
~lse/>

8. User Guide

8.1. Custom CSS

Limepay allows merchant to redesign the checkout iFrame content through custom css file hosted by
cartridge and rendered by the Limepay checkout API

File Location : int_limepay_sg\cartridge\static\default\css\limepay.css
CSS added to the custom file will override the Limepay default CSS.

File : (merchant_core)\cartridge\js\limepay.js

}
1) R
LimepayCheckout.render({

elementId: 'limepay-cont’,
currency: order.orderInfo.currency,
amount: order.orderInfo.amount,
paymentType: context.preselectedPaymentType == 'full' ? ‘'paycard’' : 'payplan’,
showPayNow: false,
showPayPlanSubmit: false,
checkout(SSOverride: context.checkoutCSSOverride
}s
LimepayCheckout.errorHandler(function (err) {
// Handle errors

For more detail see


https://docs.limepay.com.au/developer-portal/checkout/custom-integration-v2/#styling-the-checkout

8.2. Limepay Widget

Limepay provides widgets on product pages / quick views and cart page allowing the customer to
know a breakdown of price for each payment modes i.e, one time and pay later. There are 2 types of
widget the first being a toggle widget allowing customer interaction whereas the second a plain textual
one and requires no customer interaction. Widget enhances customer experience on the store letting
him/her know what mode of payment will be allowed for checkout. The toggle widget is identical to
the toggle button observed within the checkout iFrame as shown below, with the widget and checkout
toggle states being synced throughout the site on customer choice basis

SELECT PAYMENT METHOD * recuirs

escription Test on Development

Pay $29.98 today °

Pay now in full

Pay $7.50 today

Payment source

Credit/Debit Card
B8 ..

NB: Widgets are visible on product/cart pages only when the followings conditions are satisfied

e ‘Limepay Enabled’ preference is set as true

e Payment method ‘Limepay’ is active for site

e User session currency matches the configured currency here AUD for the ‘Limepay’ payment
method

8.2.1. Toggle Widget

Limepay' s toggle widget has two states, with one time payment on the left and pay later payment on
the right. Each side also shows the price breakdown when used for checkout by the customer. One
time price split up on the left matches with the full price as seen on product or cart level. Whereas
pay later price split up on the right matches to an instalment amount of one fourth the full product or
cart total that the customer would pay equally in 4 different slots over a duration of 2 weeks each.
Toggle widgets are allowed for a site only when the preference ‘Limepay Payment Options’ is mapped



to ‘multiple’. Followingly a merchant can configure to have the toggle button be preselected for all
customers on a particular side through preference ‘Limepay Multi Option Default . The customer can



change the state by clicking on widget and have a particular mode of payment preselected for his/her
checkout. Once a customer views the toggle widget, and changes the state either from product, cart
or checkout pages it is then recorded against user session and the same state would be retained
throughout the storefront session for product/cart/checkout pages.

A. Toggle widget selected for one time payment

A5 47.99

B. Toggle widget selected for pay later payment

© 100

8.2.2. Textual Widget

Limepay’ s textual widget calls out only the pay later price breakdown with a plain text message. This
widget requires no customer interaction.

A$ 12.00

8.2.3. Product Widget

Limepay toggle and textual widgets are supported in product pages and quick views for all type of
products, and positioned beneath the product price section. Merchant can configure to show either
toggle or textual widget through preference ‘Limepay PDP Widget Mode’. However for preference
‘Limepay Payment Options’selected as ‘splitOnly’ product widget would always fallback to textual mode
irrespective of the selected preference value for ‘Limepay PDP Widget Mode’. Certain products and or
categories can be configured to disallow pay later option through custom attributes
‘disableLimepayPayLater’. Products viewed would not show any form of the widget if the above
attribute is set as ‘true’. The attribute look up for product viewed follows the hierarchy as product >



product’s primary category. No other factors have control over the display of product widgets unlike
in the cart page related to customer scenarios like basket including pay later disabled products and or
total exceeding pay later threshold range. This will be discussed below in the cart widget section.

Let us see how product widgets are shown for different scenarios as follows

1. ‘Limepay Payment Options’ set as ‘multiple’ and ‘Limepay PDP Widget Mode’ set as
‘toggle’, product attribute ‘disableLimepayPayLater’ is set as ‘no’. Product widget would
be as shown below

wokky

549.00

-7 Y SELECT COLOR
f
: | 1l

SELECT SIZ¢

SPECIALOFFER
*e

AVAILABILITY

Qry 1




2. ‘Limepay Payment Options’ set as ‘multiple’ and ‘Limepay PDP Widget Mode’ set as
‘textual’, poduct attribute ‘disableLimepayPaylLater’ is set as ‘no’. Product widget would
be as shown below

Classic Bermuda Short m
R 2 2 3 ety \

« Prev Next »
A$ 49,00
o 4 Interest Free Payments of A$ 12.25

AVAILABILITY

qQry 1 ADDTO CART

GO08r0

3. ‘Limepay Payment Options’ set as ‘splitOnly and ‘Limepay PDP Widget Mode’ set as
“toggle’ or ‘textual’, product attribute ‘disableLimepayPayLater’ is set as ‘no’. Product
widget would be as shown below

Classic Bermuda Short

ki

A$ 49,00
{interest Free | ents of As 12.25

SELECT COLOR
1“" SWISS NAVY & WHITE

SELECT SIZE

SPECIAL OFFER
*e

AVAILABILITY

qry 1 ADD TO CART

.
GOo8nro




4. When product attribute ‘disableLimepayPayLater’ is set as ‘yes’, Limepay preferences
matches either of the above configurations 1,2 or 3 OR when ‘Limepay Enabled’ is set as
‘no’, product widget would not be shown

-
o
&

ko

3 A$ 49,0C
i 4
".

SELECT COLOR

= |
/ r SELECT SIZE

SPECIAL OFFER
v ‘e N

AVAILABILITY

Qry

NB : Merchant can set the ‘disableLimepayPaylLater’ at category level also, products
viewed whose primary category attribute have ‘disableLimepayPayLater’ value as checked
(true) do hide the product widget. Product’s ‘disableLimepayPayLater’ attribute is looked
upon for a true/checked value in the following order

1. Product

2. Product’s primary category

Product level disable pay later attribute :

Limepay

Disable Limepay Pay Later Option: | -None- v

No
Yes

Category Level disable pay later attribute :

<< Back to List

Limepay

Disable Limepay Pay Later Option:




NB: Product page widgets are placed within the cached product container, while the textual widgets
are cached toggle widgets are not, in order to render customer dynamic toggle state. So changing the
widget behavior through preference ‘Limepay PDP Widget Mode’ requires cache clear for effective
display of widget behaviour

When widget is configured for Toggle mode, they are rendered through remote include. This is to
synchronize the toggle widget with the customer dynamic selection throughout the storefront
session. While textual widget are always cached requires no dynamic content other than product
price.

8.2.4. Cart Widget

Limepay cart widgets supports toggle and textual modes and is positioned below cart total in summary
section. Merchant can configure to show either toggle or textual widget through preference ‘Limepay
Cart Widget Mode’. However, for preference ‘Limepay Payment Options’ selected as ‘splitOnly’ cart
widget mode would always fallback to textual mode irrespective of the selected preference value for
‘Limepay Cart Widget Mode’ This is same as the product widget behavior. Configured mode of cart
widget would not be visible if basket contains at least one pay later disabled product described in
above section AND/OR cart total exceeds the pay later threshold range configured for the dummy
payment method ‘Limepay_instalment’.

1. ‘Limepay Payment Options’ set as ‘multiple’ and ‘Limepay Cart Widget Mode’ set as ‘toggle’.
Basket do not contain pay later disabled product. Cart widget would be as shown below

DELIVERY

PRODUCT OPTIONS QTy PRICE TO
>t Home Delivery = Stock AS 49,00
m No. 701643382095
swiss navy & white
Y e8
v .

Subtotal AS 49,00

Estimated Total AS 51,50

s 51.50



2.

‘Limepay Payment Options’ set as ‘multiple’ and ‘Limepay Cart Widget Mode’ set as ‘textual.
Basket do not contain pay later disabled product. Cart widget would be as shown below

DELIVERY ;s
PRODUCT OPTIONS QTY PRICE TO\
Classic Bermuda Short Home Delivery 1 In Stock A$ 4900 AS 49,00
Item No. 701643382095 F
Color swiss navy & white
i

Size 8

Enter coupon code m ‘ Update Cart Subtotal AS 49,00

Shipping Ground AS 500
Shipping Discount -AS$ 250
Estimated Total A$ 51,50

i Interest Free | i A$ 12.88

UERSAl ~CHECKOUT

‘Limepay Payment Options’ set as ‘splitOnly’ and ‘Limepay Cart Widget Mode’ set as ‘toggle’

or ‘textual. Basket do not contain pay later disabled product. Cart widget would be as shown
below

PRODUCT OPTIONS QTY PRICE TO.
Classic Bermuda Short Home Delivery 4 In Stock AS 4900 AS 49,00

item No - 701643382095
Color swiss navy & white
Size 8

s

e 5ds m Update Cart Subtotal AS 49,00

Shipping Ground AS 5,00
Shipping Discount -A$250
Estimated Total AS 51,50

! Interest Free ent AS 12.88




4. When basket contains at least one pay later disabled product AND/OR Limepay pay later
threshold exceeded for cart total, Limepay preferences matches either of the above
configurations 1,2 or 3 OR when ‘Limepay Enabled’ is set as ‘no’, cart widget would not be

shown
DELIVERY
PRODUCT OPTIONS QTY PRICE TOTAL
= Home Defivery X Stock AS 4900 AS 49,00
m No 701643382095
swiss navy & white
v S
Subtotal AS 49,00
Estimated Total AS 51,50

NB: Threshold range configured for pay later payment ‘Limepay_instalment’ has to be in sync with
range provided by Limepay for the merchant to have unified checkout payment and widget experience
among product, cart and checkout pages.

Synchronising the range between systems is to keep the behaviour of the widget and checkout iFrame
identical (product pages / quick views widget don’t rely on threshold check). For example when both
payment modes are configured for site, and cart widget is set for toggle, if cart total exceeds pay later
threshold no widget will be shown. Likewise iFrame at checkout won’t allow pay later payment. If cart
widget is set for textual widget and cart total exceeds pay later threshold no widget will be shown and
checkout iFrame will be rendered with a message signalling pay later threshold breach.



Pay later threshold range configuration

Configure range provided by Limepay for merchant under payment method

Limepay Card Payment or Payment Plan Yes 1
Limepay Pay Later configuration Yes 12
PayFlex Payflex Yes 10
PayPal Pay Pal No 6
QuadPay QuadPay Yes 9
Zip Zip Yes 8

Limepay_instalment Details

Image:

Payment Processor: None
Countries: Al Edit
Currencies: (1) aup | Edit
Customer Groups: all | Edit

Min/Max Payment Ranges:  Min/Max Payment Ranges

As |5 to 1200
¥ to
€ to

Since ‘Limepay’ is the main payment method is used for checkout no range shall be set here

QiriI_LERIIFVAIS AELLRL e oS “ \\

] Card Payment or Payment Plan Yes 1 \\_
Limepay_instaiment Limepay Pay Later configuration Yes 12 . N
PayFlex Payfex Yes 10 -]
PayPal Pay Pal No 6 @
QuadPay QuadPay Yes 9 (-]
Zip Zip Yes 8 Q g
Limepay Details

Description: © ~
HTML Editor

Image: Select

Payment Processor: LIMEPAY <LIMEPAY>

Countries: a  Edit

Currencies: 1) aup | Edit

Customer Groups: Al Edit

“tin/Max Payment Ranges: Min/Max Payment Ranges
As to




8.2.5. Checkout Content & Stages

Limepay payment section for checkout is rendered within an iFrame appearing when the customer
selects Limepay payment method for billing. The customer must enter the card details in the iFrame
and then proceeds. Upon progressing the customer might encounter subsequent stages if applicable
within the same iFrame, that has to be filled in before completing the order. The subsequent stages
for one time / pay later checkout could be as follows :

One time settlement stages

e 3D Secure page for 3DS supported cards

Pay later payment stages

e email/phione OTP verification

e |dentity Details — Name/address/DOB details for KYC (for new customer who have not KYCed
before)

e |dentity Details — Passport/DL details for KYC (for new customer who have not KYCed before)

e Review payment plan, accepting terms and conditions

e 3D Secure page for 3DS supported cards

As the customer advances with each stage within the iFrame and click on the place order button,
a payment token is generated by the Limepay APl and saved against the order to be used for the
create order service. Customer then lands on order summary page, and upon clicking the place
order button a service call is triggered to Limepay to complete the order. On successful service
response customer gets the order placed and lands on the order confirmation page.

Limepay payment iFrame in checkout billing :

SELECT PAYMENT METHOD * rzquiren

PR, Card Payment or —
e A ® cayment Plan v @ EOS

escription Test on Development

Pay $29.98 today

Pay now in full

Pay $7.50 today

y Now Pay e

Payment source

5 Credit/Debit Card i

wvisa @




iFrame content when toggle switched to pay later option

Contact Details

Phone

+619895292329

Email
abduravoof@gmail.com

erify vour identity. Limepay collec
verity your identity. Limepay collec

It is a condition of the payment plan

Wik vt e ore bv reading our
e. You can learn more by reading ou

Verify contact details




3D Secure page (test page for sandboxes)

O Credit Card ® g:;:::‘w;l::"“" visa @ - \

ay upfront or In instalments, using your credit or deblt card

To protect your card against unauthorised use, enter your bank issued code below.

They may referance our payment provider, Limepay, and pre-authorise a zero amount.

3D Secure

Test Page

Complete a required action for this test.

What is this page?

If you unexpectedly reached this page while checking out

on a website, you won't be charged. Please reach out to
us with the URL of this page in your message.

Contact support +

This Is a 3D Secure non-payment

authentication test page. COMPLETE AUTHENTICATION

In live mode, customers will be asked to
verify their identity with a push notification, FAIL AUTHENTICATION
a text message, or another method chosen

Yy their bank.

CONTINUE TO PLACE ORDER >

NB: 3DS page is shown within the iFrame in subsequent stages of customer billing form



Pay later email & phone OTP verification

DID YOU RECEIVE THE CODE(S)?

We've sent codes to +917907163740 and fiaz.raffi@tryzens.com

Mobile code

Em

Go back

ail code

Identity Details

IDENTITY VERIFICATION

We need to collect some personal information to verify your identity

Name:

uetuyertuye WO
Date of Birth:

01 01

Australian Residential Address:

727 Collins Street, Docklands VIC, Australia

Identification Method:

Driver's Licence

74674674 New South Wales

Verify identity —

Go back

sjdskhdk

2001




Pay later review payment plan stage

&« Back

YOUR PAYMENT PLAN

Due Today: 25.14 Change todays payment amount  =»

3 fortnightly payments of 25.12, starting 3 Jul 2021 Change =

[[] Pve read and agree to the Payment Plan Terms and consent to the collection, use and disclosure of my personal
information in accordance with the Limepay Privacy Policy

Pay later change today's payment

TODAY'S PAYMENT

How much would you like to pay today? (Minimum 25.14)

We may add a couple of cents so your future payments are equal.

25.14

AN

Pay later change payment dates (+/- 2days from the proposed dates)

€« Cancel Update =

& Back \
G Y
YOUR PAYMENT PLAN N
19 JUN 2021 3 JUL 2021
$30.00 $23.50
Change Change
17 JUL 2021 31 JUL 2021
$23.50 $23.50
Change Change
I've read and agree to the Payment Plan Terms and to the collection, use and disclosure of my personal
information in accordance with the Limepay Privacy Policy




Once customer has successfully advanced through all stages applicable for one time or pay later
payments, customer can finally proceed for order completion.

8.2.6. Customer Applicable Checkout View

The iFrame rendered for Limepay payment section differs based on configuration and customer basket
state. Let us see different possible payment iFrame checkout options offered to customer based on
following rules :

A. Limepay one time and pay later allowed
When both mode of payments are configured for the site (preference ‘Limepay Payment Options’
setas ‘multiple’)

1. And storefront customer has no pay later disabled product in cart nor pay later threshold
exceeded for cart total, iFrame renders as shown below. Customer can choose between
the 2 modes for payment for checkout by toggling to the desired state

SELECT PAYMENT METHOD * meo

Pay $29.98 today

Pay now in full

Pay $7.50 today

Paymant source

Credit/Debit Card
visa

=] a v



2. Pay later disabled product added to cart by customer, iFrame renders as shown below.
Limepay payment falls back to only allowing one time settlement for placing order and
customer cannot toggle nor check out with pay later option

n

Pay $2998 today °

Pay $7.50 today

3. Pay later threshold exceed for cart total (no pay later disabled product in cart), iFrame
renders as shown below. Limepay payment falls back to only allowing one time settlement
for placing order and customer cannot toggle nor check out with pay later option

SELECT PAYMENT METHOD * recuir

tion Test on Development

Pay $29.98 today

Pay now in full

Pay $7.50 today

Payment source

Credit/Debit Card
B e




4. Basket contains pay later disqualifying products (rule A2 above) and basket total also
exceeds pay later threshold (rule A3 above), rule A2 takes precedence over A3. Here
Limepay payment falls back to only allowing one time settlement for placing order

i

Pay $2998 today

Pay $7.50 toda

B. Limepay pay later only allowed

When only pay later payment is configured for the site (preference ‘Limepay Payment Options’ set as
‘splitOnly’)

1. And storefront customer has no pay later disabled product in cart nor pay later threshold
exceeds, iFrame renders as shown below. Customer can only checkout with pay later
advancing through different stages, one time settlements not allowed for site

SELECT PAYMENT METHOD * r=auirsD

Jescription Test on Development

Pay $2998 today

Pay now in full

Pay $7.50 today

Buy Now Pay Later

Payment source

Credit/Debit Card
B8

visa @




2. Pay later disqualifying product added to cart, no Limepay payment method option is shown
for checkout rather only shows other applicable payment methods. Limepay payment stays
disabled entirely for customer until basket is cleared form pay later disabled products.

@ Credit Card
Select Credit Card | Select from saved cards v
* Name on Card
* Type Visa v.
* Number
Example: 4111111111111

* Expiration Date: |January v | (2016 v

* Security Code

Save this card

N

L

3. Pay later threshold exceed for cart total and no pay later disabled product in cart, iFrame
renders as shown below. A message is displayed to customer within iFrame signalling breach
of pay later threshold. Customer cannot checkout using Limepay in this scenario unless cart
total is adjusted within the stipulated range

. . _ Card Payment or e
Credit Card ® pavment Plan b MK E

Pay upfront or in instalments, using your credit or debit card




Basket contains pay later disabled product (rule B2 above) and basket total exceeds pay later
threshold (rule B3 above), rule B.2. takes precedence over B. 3. and customer iFrame behavior
would be the same as of rule B3. Where no Limepay payment methods are offered for
checkout. Customer must proceed with other payment methods for placing order

@® Credit Card

Select Credit Card | Select from saved cards v

¢ Name on Card

. Type Visa b
* Number
Example: 4111111111111
* Expiration Date: |January v | |2016v

* Security Code

Save this card

N

N\ .

8.2.7. Payment Method Description

Limepay display's a configurable description text ‘Pay upfront or in instalments, using your credit

or debit card’ to the top of the iFrame content once a customer has selected the Limepay payment
method. See below



SELECT PAYMENT METHOD *

® Gamentran © o [
otion Test on Development
Pay $29.98 today °
Pay now in full
Pay $7.50 today
Payment source
E Credit/Debit Card -

Merchant may decide to remove or amend the description text through payment methods
configuration from Business Manager

Limepay Card Payment or Payment Pian

pay_instalment Limepay Pay Later configuration

PayPal Pay Pal

Limepay Details

e ® Pay upfront or in instalments, using your credit or debit card.

LIMEPAY <LIMEPAY> M

Countries: Edit

rrencies Edit

8.2.8. Changing Billing Email / Phone

Limepay accepts customer’s billing address details for rendering the checkout iFrame. Any change
made to billing form fields customer email (for guest user) or billing phone number after checkout
iFrame has been loaded and customer focusses out of the field, iFrame auto refreshes. It does so for
Limepay checkout APl to accept the updated email/phone value. Note OTP is sent to phone and
mailbox, and this is the reason why iFrame has to refresh to send codes to the last entered customer
details.



For checking out with pay late payment, customer email address will be auto populated within the
iFrame, whereas customer will have to renter their billing phone number in E164 format (prefixed by
+ [country code]) onto the phone field within the iFrame. Limepay has a future enhancement in
pipeline to auto populate the phone number in E164 onto the iFrame field rather than customer
entering it manually as mentioned above.

8.2.9. Limepay Control Switch

Limepay provides a control switch to turn off Limepay payments for site at checkout and hiding
product/cart widgets. This is based on the preference ‘Limepay Enabled’, setting it as ‘No’ hides all
instances of Limepay widgets and billing payment method on checkout for the site.

Note, for effective display of Limepay widgets and billing payment methods make sure the following
configurations are correct with respect to the storefront currency allowed for the site



o Preference ‘Limepay Enabled’ is set as ‘Yes’

e Main payment method ‘Limepay’ enabled status is ‘Yes’ i.e, Active

e Main payment method ‘Limepay’ is configured with currency “AUD’ and storefront currency
matches with the same

9. Refunds & Backend Operations

9.1. Refunds

The cartridge provides the ability for merchants to trigger refunds through code. As SFCC does not
offer refund functionality OOB, merchant to implement the following code wherever applicable to
trigger refund

Use the following code hooks to trigger a refund



if (HookMgr.hasHook('limepay.payment.refund')) {
// Invokes Limepay refund hooks
refundResult = HookMgr.callHook('limepay.payment.refund', 'ProcessRefund’, order, refundAmount);

}



Function Argument \ Data Type Value

order dw.order.Order SFCC Order object
refundAmount String Refunding amount

Please refer link for more details

9.2. Payment Flow Processes

It is important to know what backend processes takes place while placing a storefront order through
Limepay. This knowledge gives merchant an idea of adding new customisations wherever required.
The process begins all with rendering the billing payment form in iFrame. The iFrame is loaded when
Limepay payment method at billing section is selected by the customer. At this moment all necessary
billing details that the customer has entered is parsed by the Limepay Checkout API through init() and
render() functions


https://docs.limepay.com.au/openapi/payments/operation/CreateRefund/

File : {merchant_core}\cartridge\js\limepay.js

LimepayCheckout.init({
publicKey: context.publicKey,
email: limepayEmail,
phone: formattedPhoneNo,
customerFirstName: billingDetails.firstName,
customerLastName: billingDetails.lastName,
customerResidentialAddress: billingDetails.customerResidentialAddress,
customerToken: limepayCustomerToken,
hidePayLaterOption: context.hidePayLaterOption,
hideFullPayOption: context.hideFullPayOption,
paymentType: context.preselectedPaymentType == 'full' ?

"paycard’ : 'payplan’,
paymentToken: function (token) {
savePaymentToken(token);

}

1

LimepayCheckout.render({
elementId: 'limepay-cont’,
currency: order.orderInfo.currency,
amount: order.orderInfo.amount,
paymentType: context.preselectedPaymentType == 'full' ?

"paycard’' : 'payplan',

showPayNow: false,
showPayPlanSubmit: false,

checkoutCSSOverride: context.checkoutCSSOverride,
primaryColor: limepayPrimaryColor

1)
LimepayCheckout.errorHandler(function (err) {
// Handle errors
1)
LimepayCheckout.eventHandler(function (event) {
$('body").trigger('limePayment:handleLimePayEvents',
{ event: event });

1)

Once customer has filled in all the payment details within the iFrame and advances through all
subsequent stages and clicks on the place order button, then the Limepay submit() APl is invoked



LimepayCheckout.submit();



Upon invoking submit(), Limepay generates a payment token for the amount initialized in the init()
call and on success returns to the callback function paymentToken() initialized under the init(). Here
savePaymenToken(token). The purpose of the callback is to save the generated token that is used later

for placing order



LimepayCheckout.init({

paymentToken: function (token) {savePaymentToken(token);

1)



NB: Changes to order total, billing phone and email needs after iFrame has been rendered and is in
view to customer, the same changes has to parsed again by the checkout API through init() and then
iFrame has to be reloaded through render() function. This is because payment token are generated
based on the order amount that is being declared inside the init(), and OTP has to be sent to the latest
email/phone entered by the customer for pay later payment option. OOTB cart update scenario do
currently invoke the init() and render() methods, however any merchant specific requirement has to
follow the same.

Inside the callback function the the generated payment token and E164 formatted phone number
from customer billing is saved to basket custom attributes. Later on upon clicking the placing order
button from order summary page the same data is copied to order object and then used for the Pay
Order service API.

Next, during place order Limepay executes two service calls one after the other to complete a
transaction, they are Create Order followed by Pay Order API (Refer section 2.3). Make sure during
integration the quota limit related to HTTPClient services are not exceeded that would lead to an error
during checkout.

10. Testing

Important, test with cache ‘enabled’ for the site as product page and quick views are cached. If product
pages are configured for toggle widget, widget rendering is not at all cached in order to reflect the
customer specific toggle state. But when configured for textual widget, widget renders from the usual
product content cache. Cart and checkout pages have no caching so widget or iFrame would always
be respective to current configuration and customer basket state. When testing with cache enabled,
and switching preference values for product widget behavior ‘Limepay Cart Widget Mode’, requires
cache to be cleared each time for rendering the expected widget behavior.



10.1. Checkout with One Time Payment

Add suitable products to cart and proceed by entering shipping details

Customer Billing page

ENTER GIFT CERTIFICATE OR COUPON CODES

Enter coupon code

Redeem Gift Certificate

SELECT PAYMENT METHOD * reauiren

Credit Card C IF el

Description Test on Development

Pay $29.98 today

Pay now in full

Pay $7.50 today
Payment source

Credit/Debit Card

B e ¥

Payment Form

Customer could use the one time payment for checkout as outlined in above section by entering
details onto the respective form. The payment form viewed could be either one according to following
scenarios (based on the group of configurations and customer basket state)



1. ‘Limepay Payment Options’set as ‘multiple’, basket has no pay later disabled products and cart
total threshold is not exceeded. Customer has set the toggle towards one time payment option

SELECT PAYMENT METHOD * recuiRec

ription Test on Development

Pay $2998 today

Pay now in full

Pay $7.50 today

Payment source

Credit/Debit Card
8

viss @

OR

2. ‘Limepay Payment Options’ set as ‘multiple’, basket has pay later disabled products and cart
total threshold is not exceeded

=




OR

3. ‘Limepay Payment Options’set as ‘multiple’, basket has no pay later disabled products and cart
total threshold is exceeded

SELECT PAYMENT METHOD * recuiR&D

0 C: -« @
cacrotion That o6 Develspiint
Pay $29.98 today ©
Pay now in full
Pay $7.50 today
Payment source
Credit/Debit Card v

B iy

OR

4. ‘Limepay Payment Options’ set as ‘multiple’, basket has pay later disabled products and
cart total threshold is exceeded

Pay $2998 today ~
Pary o in | 7




Enter the one time settlement card details. Proceed through 3DS page if applicable and click on place
order button to proceed to the order summary page



Order Summary Page

STEP 1: Shipping STEP 2: Billing STEP 3: Place Order

Help? 800-555-01%
PRODUCT QTY TOTAL
Classic Bermuda Short 1 InStock AS4900  APDER SUMMARY -t
Item No - 701643382088
Color swiss navy & white
Size 6 Subtotal AS$ 49,00

Edit Shipping AS 500
Ground

Subtotal AS 49,00 Shipping Discount  -AS$ 2,50

Shipping Ground AS 5,00 Order Total: A$ 51,50
Shipping Discount -A$ 250
Order Total AS 51,50

SHIPPING ADDRESS  =a¢

= [ H chi
« Edit Cart PLACE ORDER ot St Sl
SPRINGFIELD, NSW 2630

country AL
Method: Ground

BILLING ADDRESS Edit

a

Ella Ella S Hirschfeld

41 Blairgowrie Avenue
SPRINGFIELD, NSW 2630
country AU

PAYMENT METHOD Edit

Card Payment or Payment Plan
Amount: AS 51,50

Click the place order button on summary page, to complete the order



Order Confirmation Page

Thank you for your order.

If you have questions about your order, we're happy to take your call (800-555-0199) Monday - Friday, BAM - 8PM

©Order Number: 00012106

Order Placed June 25, 2021
PAYMENT METHOD PAYMENT TOTAL

Card Paym

- Subtotal A$49,00
Aamount:~d
BILLING ADDRESS Shipping Ground -

EllsElls S

r Payment Plan

0
8

Hirachfeid

V2630 Order Total: A$51,50

Prone: (02) 6190 4180

[s]

"l‘ S
]
i
3
i
iy
]

SHIPMENT NO. 1

SHIPPING STATUS:
Nct Shipped

Ella Ells 5 Hirschfald
METHOD: 41 Blairgow
Croied SPRINGFIELD, NSW 2530
country AU
(02) 6190 4180

SHIPPINGTO

Qry PRICE
AS4900

Bermuda Short
NO.: 701443382088
W swviss nevy &white

(al




10.2. Checkout with Pay Later Payment

Add suitable products to cart and proceed by entering shipping details

Customer Billing page

ENTER GIFT CERTIFICATE OR COUPON CODES

Enter coupon code

m| Check Balance

Redeem Gift Certificate

SELECT PAYMENT METHOD * rsquireD
) Credit Card @® Card Payment or - E

Payment Plan

Description Test on Development

Pay $29.98 today

Pay now in full

Pay $7.50 today

Buy Now Pay Later

Payment source

8 Credit/Debit Card G

visa @

CONTINUE TO PLACE ORDER >




Payment Form

Customer could use the pay later payment for checkout as outlined in above section by entering
details onto the respective form. The payment form viewed could be either one according to following
scenarios (based on the group of configurations and customer basket state)

1. ‘Limepay Payment Options’ set as ‘multiple’, basket has no pay later disabled products and
cart total threshold is not exceeded. Customer has set the toggle towards pay later payment
option

SELECT PAYMENT METHOD * requirsD

= Card Payment or
Payment Plan

description Test on Development

Pay $29.98 today

Pay now in full

Pay $7.50 today

B Late

Payment source

B Credit/Debit Card -

visa @




OR

2. ‘Limepay Payment Options’ set as ‘splitOnly, basket has no pay later disabled products and

cart total threshold is not exceeded

SELECT PAYMENT METHOD * rsquirsn

yescription Test on Development

Pay $29.98 today

Pay now in full
Pay $7.50 today

!

Payment source

Credit/Debit Card

visa @

B

Enter the pay later payment details. Proceed to subsequent OTP verification stage by clicking on the

‘Review payment plan’ button within the iFrame.



Varify your contact details

Enter OTP received on billing email & phone number inbox. Then click on ‘Confirm’ button on iFrame
and proceed to next stage

&« Back .
YOUR PAYMENT PLAN

Due Today: 25.14 Change todays payment amount =

3 fortnightly payments of 25.12, starting 3 Jul 2021 Change =

[] I've read and agree to the Payment Plan Terms and consent to the collection, use and disclosure of my personal
information in accordance with the Limepay Privacy Policy

Customer can adjust the payment plan in this stage, and finally check the terms and condition
checkbox before clicking on the place order button to proceed to the order summary page



Order Summary Page

cemegre wew wwe - \\\
PRODUCT QTY TOTAL N
1- M laceir Rarmiwia hart
3 \ Classic Bermuda Short 1 In Stock AS 49,00 ORDER SUMMARY
aAr Item No.: 701643382088
g Color swiss navy & white S
! Size 6 Subtotal  AS 49,00
J \ Edit Shipping AS 5,00
Ground
Subtotal AS 49,00 Shipping Discount - AS 2,50
Shipping Ground AS$5.00 Order Total: A$ 51,50
Shipping Discount -AS250
Order Total A$ 51,50
SHIPPING ADDRESS
BILLING ADDRESS
PAYMENT METHOD

Click the place order button on summary page, to complete the order

3DS Verification during Placing Order

Test Payment Page

This is a test payment of $1,240.98 AUD using 3D Secure.

In live mode, customers will be asked to verify their identity with a push

notification, a text message, or another method chosen by their bank.

COMPLETE AUTHENTICATION FAIL AUTHENTICATION



3DS Verification error during Placing Order

@.IIIL'....‘J Ermer Q) Q & E

STEP1: Shipping > STEPZBling » STEP X Flace Order
Help? 800-555-0133

[ Inuaic] payment corfirmmation request

ORDER SUMMARY r
SELECT OR ENTER BILLING ADDRESS » RECUR=D

L3
*First Hame | Test Tt |
Subtotal  A$ 1.195,55
* Last Hams. ‘ | Edit Shipping A% 40,88
Graund

Order Total: A$ 1.240,38

* Address 1 ‘ 1 Marin

SHIFFING ADDRESS
Address 2 ‘ | POFP

<oy [ |

* ZIP Cote ‘ 4870 |

BILLING ADDRESS Edi

* Country ‘M'-‘ a - |
. state “kw&.u- Vil - |
L | PAYMENT METHOD =
*Emall |
5L Salesioroe Commenoe O
ENTER GIFT CERTIFICATE OR COUPON CODE S
Entar caupon cads
Reggem GITt Certificate
SELECT PAYMENT METHOD - RECURED
® Crochl Cord v W
* Name an Card ‘ |
“Type [ ~ |
* Number ‘ |
Exargie 4111111111111
11
Order Confirmation Page
\
Thank you for your order. %
ave qussson R " g
X 00012108
PAYMENTTOTAL
Subtors AS 49
Order Total A$51.5(
SHIPMENT NO. 1

SHIPPING STATUS: SHIPPING 10

W THOD:




10.3. Test Cards

Refer link, for Limepay test card details

Refer link, for Limepay pay later plan test values

Please check with Limepay for 3DS and other test details

11. Operation, Maintenance
11.1. Availability

In case of problems with the connection to Limepay Payments, please contact Limepay support

Please supply as much information as possible (Merchant account, time, order number,). Also, check
the log files.

11.2. Failover / Recovery Process
In case the Limepay service is unavailable, the user will not be able to checkout using Limepay payment

methods and an error message would be displayed on the checkout pages.

The service availability can be tracked in SFCC using the Service Status.

11.3.Support

In case of problems with the integration, missing features, etc. please contact the Limepay support

12. Appendix

12.1. System Extensions

In addition to the changes mentioned above, the below system extensions were done as part of the
cartridge.


https://docs.limepay.com.au/developer-portal/checkout/custom-integration-v2/#test-card-numbers
https://docs.limepay.com.au/developer-portal/checkout/custom-integration-v2/#setup-a-test-payment-plan-sandbox-only

12.1.1. Order

ID Purpose

limepayOrderld Stores the Limepay order id generated during payment
authorization in Create Order API

limepayPaymentToken Stores the payment token generated at billing used for

completing an order with Pay Order API. Value copied from
equivalent basket attribute during place order.
limepayFormattedPhoneNo Stores the E164 format phone number obtained from billing
details. This is sent in with Pay Order API to complete order
and value is copied from equivalent basket attribute during
place prder.

limepayRefundResponse Stores array of response objects containing refund id and
amount obtained after Create Refund API

12.1.2. PaymentTransaction

ID \ Purpose
limepayPaymentResponse Stores the response of Pay Order API

12.1.3. Basket

ID Purpose

limepayPaymentToken Stores the payment token generated at billing before
proceeding to order summary page

limepayFormattedPhoneNo Stores the E164 format phone number obtained from billing
details before proceeding to the order summary page

12.1.4. Site Preference

limepayEnabled

limepayClientPublicKey

limepayClientSecretKey

limepayPaymentOptions

limepayMultiOptionDefault

limepayPDPWidgetMode

limepayCartWidgetMode




limepayScriptAPIUrl

limepayCustomerServiceEmail

3DSEnabled

limePayMin3DSAmount

limepayPrimaryColor

applePayDomainAssociation

Refer section for 6.1. for their purpose

12.1.5. Category

Purpose
disableLimepayPayLater Stores pay later payment enable/disable status for product

category

12.1.6. Product

ID Purpose

disableLimepayPayLater Stores pay later payment enable/disable status for product
12.1.7 Profile

ID Purpose

limepayCustomerld Stores limepay customer ID

12.2. Locating Code Changes

Developers can locate code changes done for the Limepay integration by searching for the following
comments pattern

IS
// Limepay changes - START
Limepay code changes

// Limepay changes - END



ISML
<!-- Limepay changes - START -->
Limepay code changes

<!l-- Limepay changes - END -->



13. Known Issues

No known issues

14. Release History

Version Date Changes

21.1.0 22 June 2021 Initial Release

22.1.0 22 March 2022 2" Release

22.2.0 26 June 2022 Logged in users - upserting the
Limepay customer details.
Primary color & JS changes.
Enabling and verification of Apple
Pay.
Change of Message and Detail field
for error messages.

22.2.1 04 July 2022 Update documentation




	Contents
	1. Overview
	2. Features
	2.1. Payment Modes
	2.2. Limepay Payment Widget Payment widget for product and cart pages provides the customer a breakdown information of the price between one time and pay later payment modes and thereby providing a means for the customer to opt between the 2 modes for...
	2.3. Limepay 3DS
	2.4. Supported API

	3. Limitations, Constraints
	4. Privacy, Payment
	4. Compatibility
	5. Installation
	5.1. Cartridges
	5.2. Metadata
	5.3. Google Phone Number Library – Node.js extension

	6. Configurations
	6.1. Configuring Site Preferences
	6.2. Configuring Payment Methods

	7. Storefront Code Changes
	7.1. Controller Changes
	COPlaceIOrder.js
	COSummary.js
	COBilling.js
	Account.js
	Login.js

	7.2. Models Changes
	CartModel.js

	7.3. Client Side JS Changes
	billing.js
	productSet.js
	app.js

	7.4. Custom Files
	limepay.js

	7.5. ISML Changes
	billing.isml
	paymentmethods.isml
	cart.isml
	htmlhead.isml
	productsetproduct.isml
	productcontent.isml
	producttopcontentPS.isml


	8. User Guide
	8.1. Custom CSS
	8.2. Limepay Widget

	9. Refunds & Backend Operations
	9.1. Refunds
	9.2. Payment Flow Processes

	10. Testing
	10.1. Checkout with One Time Payment
	Customer Billing page
	OR
	OR
	Order Summary Page


	10.2. Checkout with Pay Later Payment
	Customer Billing page
	OR
	Order Summary Page


	10.3. Test Cards

	11. Operation, Maintenance
	11.1. Availability
	11.2. Failover / Recovery Process
	11.3. Support

	12. Appendix
	12.1. System Extensions
	12.2. Locating Code Changes
	JS
	ISML


	13. Known Issues
	14. Release History

